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Abstract 

We report on the state of the art in the area of formal verification at the hardware- 
software interface. Following a systematic survey of the literature covering the last 
ten years, we can give a landscape of existing verified systems and verification 
tools. Verification methods have come of age, with verified operating system ker- 
nels, compilers, and hardware, but there are still substantial gaps, in particular with 
respect to security; we detail these research needs and propose directions for future 
research efforts. 
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1 Introduction 

For a system to be trustworthy, it is a necessary precondition that the complete system is correct, 
from the applications running on the system down to the hardware. Correctness, as understood 
here, means that there is a formal specification of the intended behaviour of the system, to which 
the system adheres. 

This comprehensive notion of correctness (the 
“whole stack” or end-to-end) requires interfaces and ab- 
stractions between the different layers of the system. 
Figure 1 shows the typical layers of abstraction in a 
system (inspired by [85]): a system is grounded in the 
physics underlying its electronics. From simple gates 
and circuits, a CPU is built with a specific microar- 
chitecture. The most prominent abstraction layer is 
between the hardware and the software. This interface 
is defined by the instruction set architecture (ISA) of the 
hardware, which defines how the hardware behaves as 
seen by the software. In the software, we abstract more 

The World 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Physics 

 
 
 
 
 
 
 
 
 

ISA 

and more from the concrete implementation, first by an 
operating system which hosts user applications (includ- 

Figure 1: Layers of abstraction. 

ing possibly more layers such a hypervisor between the hardware and the operating system), 
second by a virtual machine on which applications run. They form the interface of the system 
to the outside world, the latter being either the human user or an environment in which the 
system acts, or a network of other machines. 

Structuring the system in such a way raises the question how correctness, which is usu- 
ally stated at the user-visible upper levels (the “world”), can be transferred and proven at the 
lower levels. This question is exacerbated by the vastly different languages and development 
paradigms in hardware and software. This makes formal verification at the hardware-software 
interface challenging. 

The scope of this report lies on the challenges we face when formally verifying the correct- 
ness of combinations of hardware and software. We are concerned with formal proofs, rather 
than exhaustive testing or hardware-in-the-loop tests, and our focus is on the layers in Fig- 
ure 1 which are not greyed out; in other words, the correctness of low-level system software 
(operating system, device drivers, hypervisors) and the ISA, but not correctness of the microar- 
chitecture, nor correctness of software applications, which are covered by other lots. However, 
the question how to cross the boundary between hardware and software and verify correctness 
properties of a complete system is also relevant here. 

The structure of this report is as follows: Section 2 revisits the basics of formal verification, 
with a focus on specific challenges of verification at the hardware-software interface. Section 3 
presents the results of a systematic survey of the state of the art, where we have surveyed and 
evaluated the publications of the last ten years in relevant conferences. Finally, Section 4 details 
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future research needs, and proposes a roadmap for future efforts. 
 

2 Formal Verification 

Trustworthy systems have to be safe against threats from the outside (attacks) and from the 
inside (defects). The former is broadly subsumed as security, the latter as safety. 

 
2.1 Safety and Correctness 

Typical safety properties state the system satisfies a given specification. The specification can 
pertain to the required functional behaviour of the system, i.e. specifying which response is 
expected to which input, or the non-functional behaviour, which specifies response time, power 
consumption, memory consumption (for software) or die area (for hardware); consequently, 
we speak of functional and non-functional correctness. Functional correctness can be stated 
in terms of conditions on the input, or starting state of the system, implying conditions on the 
output, or end state of the system; these can be formulated in a variety of logics (see below), 
and take the form of contracts or assume-guarantee pairs. Going beyond these simple mech- 
anisms, we can formulate requirements in formal modal logics such as LTL or CTL [134]. 
Non-functional properties are formulated either directly (“System must always respond within 
20 µs.”), or by extending specification mechanisms with the required dimension (e.g. timed 
automata, duration calculus, hybrid automata [5, 40, 88]). Typically, violations of such safety 
conditions can be eventually detected by monitoring the behaviour (e.g. run-time checks) of a 
system [4]. This will change if we consider security requirements. 

 
2.2 Security 

An important class of non-functional properties are security properties. Classical security prop- 
erties like confidentiality or integrity are typically enforced by access control, or information 
flow control mechanisms. Ultimately, an access-control policy regulates for each pair of subject 
(process) and object (data) which actions are allowed to be executed. Access control policies 
are represented in a structured way, for instance, by means of roles [62] or capabilities [57] to 
ease their formalization and maintenance. While access control policies regulate the access to 
data, they do not consider the information stored in the data. In contrast, information flow con- 
trol policies regulate the flow of information between different subjects (or security domains) 
within a program. Hence, instead of controlling the access to confidential data, information 
flow control regulates the effect of confidential information to the (visible) behaviour of a sys- 
tem. E.g., whenever running a program twice with same public input (but different secret ones), 
the visible behaviour of both runs are indistinguishable. Data hidden to an observer must not 
affect the (part of the) behaviour of the system seen by the observer. As a result, the violation 
of such requirement can only be detected by comparing different runs of a system. In theory, 
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they represent closure properties on sets of possible system runs (called hyperproperties) [45], 
which are out of range for a run-time monitor to check. 

In an operating system, for instance, a kernel has to isolate different processes from each 
other to ensure that actions of one process can only influence other processes in an authorized 
way. However on a hardware level, resources, like memory or I/O-devices, are typically shared 
between various processes. Uncontrolled access of processes to shared resources would enable 
unauthorized information flow between them using the common resource as a covert channel 
(Information filed into the resource by one process is read by the other process). Hence, access 
to resources are usually implemented via a virtualization of (physical) resources hiding their real 
physical addresses and therefore preventing that a process can circumvent the access control. 
Furthermore, virtualization must hide any dynamic property of a resource that is influenced 
by the behaviour of other processes from the process (providing temporal/spacial separation). 
Typical examples are the response time when accessing memory (caching!) or the occupancy 
of a device by other processes. Since communication between processes requires the ability 
of at least one process to change the stored information in the resource, shared access to static 
information like physical locations of devices do not constitute a covert channel. 

 
2.3 Structuring Mechanisms 

To build large systems, we need to be able to structure both the development and the properties 
of the system into smaller constituent pieces, and introduce well-defined interfaces between 
them. For these structuring operations, we distinguish between: 

 
• Horizontal structuring decomposes a complex system into smaller components, and in- 

cludes modularization into components, aggregation of similar components, composition 
and decomposition. 

• Vertical structuring links models on different abstraction levels by refinement (or abstrac- 
tion in the inverse direction). 

 
For verification, the interesting question is whether structuring operations preserve the property 
in question, i.e. whether we can prove properties of the whole system by proving properties 
of the constituent parts, and combine them. This is called compositionality. In general, safety 
properties are compositional, but security properties are not (although the specifics depend on 
the particular properties: functional correctness of sequential programs is compositional, but 
neither non-functional correctness nor correctness of concurrent programs). 

The idea of refinement is to construct a model of the system at a higher level of abstraction, 
where we can show the required properties, and then derive a system model at a lower level 
where the properties are preserved. This technique is used quite often in verification, often im- 
plicitly. For example, the verification of the seL4 kernel is conducted with respect to an abstract 
model written in a functional language; this can be seen as a refinement from an abstract model 
in a high-level language down to a concrete model in an efficient low-level language [113]. 
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There are two ways to work with refinements: one can either construct two models, and show 
post facto that the concrete model refines the abstract one, or one can construct the concrete 
model from the abstract one step-wise, by applying refinement operations which are guaran- 
teed to preserve correctness [15]. Related to this is the idea of cross-level verification [82, 35], 
where different abstraction levels are used simultaneously to achieve greater coverage, by relat- 
ing properties stated at the abstract level to the implementation provided on a lower level. 

As mentioned above, refinement allows one to translate valid (safety) properties about an ab- 
stract system to concrete properties about its implementation by applying a series of correctness- 
preserving transformations. In contrast to the safety case, security properties specified and 
proven in an abstract system do not uniformly translate to valid properties about a realized sys- 
tem. Roughly speaking, security properties relate the abilities of an (unknown) adversary to 
successfully attack the system. Each refinement will provide the adversary with a new (refined) 
vocabulary, which they can arbitrarily use to formulate an attack, while any attack mentioned 
on the abstract level will be refined, i.e. implemented to a particular attack in the refined layer. 

 
2.4 Challenges of the Hardware-Software-Interface 

Verification on the hardware-software-interface can be challenging, because it combines two 
very different computational paradigms, worlds views and resulting development flows. 

Hardware is costly to produce, and immutable. This means that errors are very costly to 
fix (for example, Intel’s infamous Pentium FDIV bug resulted in a cost of 475 million dollar1). 
Subsequently, hardware development is very engineering-driven, with an emphasis on correct- 
ness at the cost of flexibility; errors are not tolerated. Software, on the other hand, is flexible, 
can be produced at hardly any cost once developed, and can be changed reasonably easily af- 
terwards. This results in a more agile development methodology, which puts an emphasis on 
flexibility and change; errors are tolerated, and corrected once detected. 

Hardware has a smaller state space compared to software (e.g. a fixed set of registers as 
opposed to a large number of variables), making it more amenable to automatic proof methods 
such as model checking and symbolic execution via SMT-provers. Software has a larger state 
space, and also a larger vertical development space— the abstraction levels range from the ISA 
over low-level software (device drivers, operating system) to user applications. The hardware 
of a system is typically described in one language (a hardware description language, HDL, such 
as VHDL or Verilog), whereas a number of languages are used for the software — from the 
binary machine code described by the ISA over low-level languages such as C to higher-level 
languages such as Java or Javascript (ECMAScript) to domain-specific languages describing 
particular application areas, reflecting the vertical design space described above. 

One problem when combining different formalisms is that we have to guarantee consistency, 
in the sense that shared symbols are given the same meaning, and that no contradictions are 
generated. This is typically achieved by embedding the formalisms into a more general one 

 

1Source: Intel Corporation 1994 Annual Report, via Wikipedia. 
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(specification languages like UML, first-order or higher-order logic, type theory etc.), or by a 
well-defined interface linking both sides (the prime example of this being the ISA). 

Beyond that, when combining hardware and software we have to consider the properties 
of the system as a whole, which combines both worlds multiple times. For example, a typical 
application has a software stack (user-interfacing application code running on a Java virtual 
machine, running in an operating system which serves as an interface to the hardware), and 
properties are formulated at the abstract level (e.g. a credit card number entered in the applica- 
tion must remain private), but have to be proven across multiple abstraction layers (here, from 
application code down to micro-processor executing binary machine code, and the keyboard- 
driver actually recording the number as it is entered). Fortunately, the ISA is a well-defined 
interface between hardware and software, but it may need to be extended for the case at hand 
(e.g. when considering peripherals such as the keyboard). Thus, we need a methodology how to 
transfer properties between hardware and software — from the software world to the hardware 
and back. This discussion links with the compositionality from previous Section 2.3; here, link- 
ing software applications to hardware is a vertical structuring operation, and we are interested 
which properties are preserved. 

In general, as mentioned before, safety properties (defined as properties of each run of the 
system) are preserved from the software to the hardware, but security properties (defined, for 
instance, as a closure property on the set of possible system runs) are not. Precisely because 
hardware is so radically different from software, a whole new Pandora box of threats opens up. 
New covert channels are available on the hardware level, based on execution time, power con- 
sumption, race conditions, or even caching behaviour inside CPU-cores that potentially disclose 
evidence of code execution to a hostile observer and thus open new avenues for side-channel 
attacks. Software compartments being the main aids in security to separate individual activities 
must be mapped in terms of temporal or spatial separability on a hardware level giving rise to 
the need to thoroughly monitor and control provenance and flow of information on all channels 
even partially observable by an adversary. 

 
2.5 Verification Methods and Tools 

Verification methods and tools need to handle these challenges. In general, the question whether 
a given system satisfies a given property is undecidable; it becomes decidable once we limit 
ourselves to systems with a finite state space. Then, verification needs to consider all possible 
system runs (or states) to check that the required properties are satisfied. However, the number 
of states (the state space) becomes too huge as to make the question practically undecidable for 
realistic systems. There are three principal tools which help us to handle this problem: The first 
is compositionality, which allows us to decompose the state space of the overall system into the 
smaller state spaces of its components; the second is abstraction, which allows us to reduce the 
state space while preserving the properties to be shown; and the third one is automated theorem 

proving, which shows a property not by state enumeration but by logic inference rules. 

Unfortunately, state abstraction is very much dependent on the particular property; it can be 
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used as abstract interpretation to great effect in e.g. showing that no exceptions or no integer 
overflows occur [139]. Model checking is a general term for a family of techniques where the 
system is modelled as a finite state machine, with a smaller state space than the original one, 
properties are formulated in variations of temporal logic (LTL, CTL, timed logics) and proven 
by state exploration. This technique can be efficient for safety properties, and useful because it 
can provide concrete counter-examples, but in general awkward to show absence of faults. 

Theorem proving can be divided into automated theorem proving, where the logical infer- 
ence rules are applied without user guidance, and interactive theorem proving, where the human 
user guides the rule application. Automated theorem proving works well with decidable frag- 
ments of certain logics, e.g. Pressburger arithmetic with linear inequalities as used in SMT 
provers (or solvers) such as Z3. These provers are very powerful in their niche, but often used 
invisibly as verification engines behind the scene in verification tools; there is even a standard 
interface language SMTlib to allow interchangeability between these tools. 

Modern interactive provers such as Isabelle or Coq make use of automated provers by us- 
ing them to prove trivial lemmas which are then combined into more comprehensive results. 
Isabelle has a sophisticated methodology for this (called Sledgehammer [27]), which uses auto- 
mated provers to explore the state space, and reconstructs the proof inside Isabelle, without 
compromising the provers’ consistency. Table 1 shows an overview, without any claim of com- 
pleteness, over the existing proving tools, as used in the state of the art as surveyed in Section 3. 

Symbolic execution is state exploration combined with theorem proving, by expressing the 
state evolution as a logical formula. Originally developed for software [110] modern tools such 
as KLEE [36] can be very efficient when considering moderate to large state spaces. Related 
to this is the technique of predicate abstraction, where predicates over integers are reduced to 
equivalent predicates over boolean variables [18, 44, 65]. 

In the context of verification in the hardware-software interface, the methodology of vir- 

tual prototyping [55, 129, 90] is relevant as well. A virtual prototype is an implementation of 
the hardware in software, in particular of the microprocessor but comprising the whole system 
including peripherals as well, and using a high-level systems modelling language such as Sys- 
temC or SpinalHDL. Originally developed for early software development to enable software 
development before hardware is physically available, virtual prototypes can be used for verific- 
ation purposes as well, e.g. by using symbolic execution to show correct behaviour [34, 194]. 
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Name URL, Details 

Interactive provers 
Isabelle/HOLa https://isabelle.in.tum.de/ 

Typed higher-order logic with automated prover support and tactics, rich 
user interface, large library of available theories. 

Coq https://coq.inria.fr/ 

Inductive calculus of constructions, dependent types, rich library of avail- 
able theories. Recipient of the 2013 ACM Software System Award 

K https://kframework.org/ 

Rewrite-based semantic framework for the definition of formal operational 
semantics 

ACL2 https://www.cs.utexas.edu/users/moore/acl2/ 

Inductive first-order logic with term rewriting. Recipient of the 2005 ACM 
System Software Award 

HOL4 https://hol-theorem-prover.org/ 

Typed higher-order logic. Slightly dated but still in widespread use. 

Alloy http://alloytools.org/ 

Relational logic (as in UML). Fully automatic, with integrated model finder. 

Maude http://maude.cs.illinois.edu 

Rewriting logic engine 

Dafny https://dafny.org/ 

Programming language with integrated specification language and program 
verifier 

Automatic provers and model checkers 

Z3 https://github.com/Z3Prover/z3, SMT prover 

Alt-Ergo https://alt-ergo.ocamlpro.com/, SMT prover 

Yices https://yices.csl.sri.com/, SMT prover 

Spin https://spinroot.com 

Model checker, Recipient of the 2002 ACM System Software Award. 

nuSMV https://nusmv.fbk.eu/ 

Model checker for synchronous and infinite-state systems 
 

aIsabelle is a generic theorem prover, and Isabelle/HOL the specific instance of Isabelle for classical typed 
higher-order logic; this is the only Isabelle logic ever used in this field, so here when we refer to Isabelle, we mean 
Isabelle/HOL. 

Table 1: Overview of theorem proving tools used in verification. 

https://isabelle.in.tum.de/
https://coq.inria.fr/
https://kframework.org/
https://www.cs.utexas.edu/users/moore/acl2/
https://hol-theorem-prover.org/
http://alloytools.org/
http://maude.cs.illinois.edu/
https://dafny.org/
https://github.com/Z3Prover/z3
https://alt-ergo.ocamlpro.com/
https://yices.csl.sri.com/
https://spinroot.com/
https://nusmv.fbk.eu/
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• We distinguish safety and security properties. The former include functional 
and non-functional correctness, and can be decided in terms of input and output 
of a single run; the latter include confidentiality, privacy, and integrity, and are 
not decidable on a single system run. 

• Horizontal structuring operations construct the system from smaller compon- 
ents, and vertical structuring operations relate models of the system at differ- 
ent levels of abstraction (refinement). Compositional properties are preserved 
by horizontal structuring; safety properties are compositional, whereas security 
properties are not. 

• Verification at the hardware-software interface is a challenge because of the 
different computational paradigms and world views (languages, tools, develop- 
ment flows). This makes it hard to transfer properties, in particular security 
properties, from software to hardware or vice versa. The central interface of 
the system is the interface from the hardware to the software, the instruction set 
architecture (ISA). 

2.6 Summary 
 

 

3 State of the Art 

To systematically survey and assess the existing literature, we have reviewed all papers in the 
last ten years from leading conferences (and journals) in the field of formal verification, looking 
for papers in the area of hardware-software verification. Specifically, we were interested in 

• formalization and verification of ISAs, 

• verification and development of low-level software (as defined above), 

• and tool support for these activities. 
 

The specifics and statistics about our approach can be found in Appendix A. 

 
3.1 Formalization and Verification of ISAs 

Formalization of an ISA means the construction of a model in a format which can be read and 
processed by a computer. We have found 12 papers concerned with this endeavour. The lan- 
guages used for this purpose can be diverse; they range from programming languages or HDLs 
such as Haskell or System Verilog to theorem provers such as the K framework, ACL2, Isabelle, 

or Coq, to domain-specific languages (DSLs) invented for this specific purpose, such as SAIL 
and its precursors. Most industrially relevant ISAs have been formalized, including ARMv8, 
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Name, Refs ISA Language Notes 
[178] x86 HOL4 Model of x86-TSO in HOL4 
[140, 53] x86 K Fully executable semantics, uncovered 

  bugs in manual 
RockSalt [143] x86 Coq Checking software-based fault isolation 

  ACL2 [75] 
CORANA [197] ARM Z3 Extracts formal semantics from natural 

  language spec. for symbolic execution 
[75] x86 ACL2 Verification of x86 machine code 
[69] ARMv7 HOL4 Formalizes ARMv7 ISA 
[166] ARMv8 DSL Describes formal language ARM uses to 

  specify ARMv8 architecture 
GRIFT [176] RISC-V Haskell Sequential simulation, coverage analysis 
riscv-formal [204] RISC-V System Verilog Formal testbenches for RISC-V cores 
[182] RISC-V Kami Used by SiFive 
SAIL [9] Generic DSL Not tied to specific ISA, used for ARMv8, 

  RISC-V, MIPS 
 

Table 2: Overview of recent ISA formalization efforts. 

 
x86, MIPS, and RISC-V. The formalization efforts are summarized in Table 2. One point to 
note is that the x86 ISA proved so complex that there has been work to learn its behaviour from 
running programs [91, 195]. 

The first objective of the formalization efforts was to obtain an unambiguous and precise de- 
scription of the behaviour of the hardware, which the software running on the machine can rely 
on. This was then used as a basis for verification (see next section), but also to check consistency 
of the specification [207], to check conformance of hardware designs to the ISA [204], to model 
the micro-architecture [67], to verify machine code running on that architecture [75, 143, 135] 
or compilers targeting it [106]. 

A prominent recent development is SAIL, a domain-specific language used to specify in- 
struction set architectures. Its precursors can be found, inter alia, in the language used by ARM 
to specify their ARMv8 architecture [68, 166], but it has since then been used to specify the 
ARMv8 architecture, MIPS, and RISC-V; for the latter, it has been adopted as the ‘gold stand- 
ard’ by RISC-V international. The value of SAIL is that ISA specifications are completely 
unambiguous, readable for engineers, and can be used to generate code for theorem provers or 
other analysis tools. Figure 2 gives an overview of the SAIL architecture and tool landscape. 
From the generic description of an ISA, the SAIL tools can generate sequential emulators. 
Moreover, the Isla tool [11] proves symbolic execution for SAIL ISA specs, which is used in 
[11] to generate tests from a specification (taking the weak memory semantics into account). 
The Islaris tool [174] uses the symbolic exection engine together with the Iris formalization of 
separation logic in Coq to verify ARMv8 and RISC-V machine code. Via translation to the 
Lem language [146], a prover-independent higher-order language to model semantics, defini- 
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Name, Refs ISA Language Notes 
ISA-Formal [167] ARMv8 DSL, Verilog Industrially used at ARM 
Forte [105, 152] x86 (i7) DSLa Industrially used at Intel 
[72] RISC-V Cadence Jasper, Verification focuses on CHERI ex- 

 BlueSpec Verilog tensions to ISA 
[93] SPARCv8 Isabelle Proves non-interference for LEON3 
[75, 54, 76] x86 ACL2 Industrial verification of an embed- 

  ded x86 processor at Centaur 
Bedrock [61] RISC-V Kami Simple core, part of stack covering 

  whole embedded system 
CSLED [208] x86-32 Coq Derives consistent instruction en- 

  coder/decoder 
 

aCombines own theorem prover with model checking (symbolic trajectory evaluation). 

Table 3: Overview of recent ISA verification efforts. 

 
tions of the ISA in Coq, Isabelle and HOL4 can be obtained. (Circumstantial evidence suggests 
that these generated models are not easy to work with.) SAIL has furthermore been used to 
specify the CHERI architecture, an experimental extension of standards ISAs with so-called 
capabilities (see Section 3.7). 

Verification of an ISA means ensuring that an implementation of the ISA in hardware (the 
micro-architecture) behaves as formally specified. As opposed to software, in hardware formal 
verification — meaning proving that the micro-architecture behaves as formally specified — 
is more established. Table 3 gives an overview about recent ISA verification efforts, as they 
appear in the literature; note entries by Intel [105] or ARM [167] using formal verification as 
part of their design flow. It is further stated [72] that “formal verification methodologies for 
[RISC-V instructions] are well-established”, so it is safe to assume that formal verification in 
industrial practice is well established and not always published (an observation corroborated by 
personal experience), and hence more wide-spread than Table 3 suggests. Still, there are two 
main problems: firstly, verification which is not published may be of use to the manufacturer 
but not to the user — in particular, a formal model of the ISA to be verified against must be 
available, such that users can base software verification on it. This is not always the case, e.g. for 
the x86 ISA. Secondly, most of the papers and efforts are concerned with functional correctness 
of the ISA; this is sufficient for safety properties, but verification of security properties may 
require properties beyond what the ISA can express ([12] is a step in this direction). 

A substantial body of work is concerned with languages to model hardware; just like the 
programming languages for software, hardware description languages (HDL) are evolving con- 
stantly. Recent HDLs in this direction include Kami [42], which is integrated into the Coq 
theorem prover, and allows seamless correctness proofs; Chisel [14] and SpinalHDL [153] 
(the latter a fork of the former) which evolved from the RISC-V community at Berkeley, and 
Clash [13], which are built on functional languages with all the advantages that come with them; 



Lüth, Hutter, Funck, Zielasko: Ecosystem for Trustworthy IT 

— 12 — 

 

 

 

 
 

Figure 2: Overview of the SAIL architecture and tool landscape. 

or more recent languages such as PDL [210] targeted at pipelined processors. 

3.2 Memory Models 

A surprising amount of work concerns memory models, i.e. the behaviour of memory as ob- 
served from the software. This is partly because memory access is typically either not part of 
the ISA, or only in a very simplified fashion. The typical assumption [2] is “a per-core vir- 
tual address space translated, at page granularity via a memory management unit (MMU), to 
a single global physical address space containing all the random access memory (RAM) and 
memory mapped devices in the system.” However, in typical modern SoCs the situation is far 
more complex; Figure 3 shows the block diagram of the (at time of writing slightly dated) TI 
SoC OMAP 4460 (quoted in [2]); as we can see, addresses can be remapped in a multitude 
of ways, even creating loops if configured incorrectly. The paper [2] presents an embedding 
of configuration models for a memory bus into Isabelle, and allows e.g. consistency proofs to 
exclude such pathological situations; other work [190, 191] addresses the question how such 
complex memory models impinge on the formal verification of programs using them. 

This situation is mirrored on the software side by the memory model of programming lan- 
guages, in particular C. The C standard views memory as “objects, composed of contiguous 
sequences of one or more bytes.”[50, Section 6.2.6.1 (2)], and does not even assume one con- 
tiguous address space. All modern compilers and operating systems assume a more detailed 
model here, making use of “implementation-defined behaviour” as permitted but not described 
by the standard. This means that verifications are always specific to a particular configura- 
tion of machine architecture and compiler used. A number of papers [138, 127, 142] propose 
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Figure 3: Block diagram of the TI OMAP 4460. 
©Texas Instruments, Source https://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf 

 
extensions which allow the portable verification of realistic programs (such as OS kernels). 

Other papers address the problem of concurrency in the presence of weak memory mod- 
els. Modern processors rarely access the memory in precisely the sequence as given by the 
program, creating additional problems (for example, the recent Spectre/Meltdown bugs were 
caused by speculative execution, where memory was accessed before the program reached the 
corresponding instructions). One way out of this problem is by total store ordering (TSO); 
[163, 109] formalize this for x86 architectures. [162] presents an approach allowing to explore 
other such models formally, and [48, 132] propose DSLs to build memory models complete 
with reasoning support, [60] even with a purpose-built model checker, and [96] with a focus 
on hardware extensions. Languages and provers used here include Isabelle, Alloy, Maude, and 
Dafny. 

However, in summary it is fair to say that finding memory models which are both abstract 
enough to allow efficient verification of software utilising the memory and at the same time 
precise enough to capture the hardware behaviour accurately enough remain an active research 
area. 

 
3.3 Programming Languages 

For all its faults [117, 138], C is the dominating language when writing low-level software. 
C is portable, well-known, and has excellent and diverse tool support. This is reflected in the 
literature: in our survey, we have found 13 papers concerned explicitly with the C language 
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(not counting those verifying software written in C), three with assembly language, two with 
Rust, and one each with Scala, Lustre, and Esterel. As far as the foundations go, the established 
consensus is the use of some variant of Hoare logic, extended with separation logic to handle 
references and pointers. 

Apart from papers discussing deficiencies of the language, in particular the standard2, and 
suggesting remedies [138, 175, 127], the main bulk of this work was concerned with verified 
compilation. A milestone in this area was the first verified C compiler CompCert [128] by 
Leroy and others, who have been awarded the 2021 ACM System Award for this achievement. 
Subsequent work and papers have built on this, for example: 

• The Verified Software Toolchain [6, 7] by Appel and others uses CompCert to build a 
tool chain which guarantees correctness from the source down to the machine-language 
program running on a weakly-consistent-shared-memory machine, much in the spirit of 
Sir Tony Hoare’s verifying compiler [92]. 

• Various papers are concerned with extensions to CompCert to include separate compila- 
tion [188, 107], linking [164], or inclusion of assembly language [186] (as is common in 
low-level code). 

• A fork of CompCert is used as the compiler for the verified operating system kernel 
CertiKOS [80, 81]. 

• Other extensions cover “stack awareness”, i.e. ensuring programs do not run out of stack 
space [198, 38]. 

A different approach is to define a DSL (e.g. RESOLVE [165, 192] or CIVL [86]) which is 
expressive enough to cover interesting programs without the entrenched difficulties of a long- 
established language, but compared to work on C this seems to have been rarely followed up. 

Apart from C, the language Rust has recently gained a lot of traction [101], but there is not 
much work (yet) on large verification efforts using Rust, even though the RustBelt project [100, 
51] has laid the necessary foundations for this. An interesting recent development is to extend 
C with ownership types (RefinedC, [175]), combining established tool support for C with one 
of the main innovations of Rust. 

Furthermore, there is work on verifiable assembly languages [30, 70, 21, 151], which make 
use of the comparatively simple structure of assembly language to automate proofs, but this 
seems a rather niche application (e.g. Vale [30, 70] is used in the context of cryptography). 
Notably, we did not find many references using Ada or SPARK [19] apart from [71], even 
though it is an established framework to develop high-quality software, suggesting its use is 
in the aerospace domain rather than system software. Similarly, Esterel [66] and Lustre [32] 
are used in the context of real-time systems, and Scala [121] is not a systems programming 
language.3 

 

2There is some overlap here with the work on memory models discussed in Section 3.2, as these are a part of 
the standard, and hence the language, and in fact one of its main deficiencies. 

3For the same reason, the substantial body of work concerning verification of the Java platform, including the 
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3.4 Verification of System Software 

Early work on the verification of operating systems dates back to the eighties (see [112, Table 
2] for an overview), but these did not concern realistic kernels. Recent efforts include seL4 and 
CertiKOS; Table 4 also shows a number of industrial entries, demonstrating that formal software 
verification has arrived in the main stream. This also means, as discussed above, that there 
may be industrial verification projects which have not been published, e.g. it is unclear whether 
Microsoft actively maintains the proofs for the Hyper-V hypervisor, and there are rumours about 
verification activities at Apple. On the other hand, the start-up Prove& Run has announced a 
verified kernel [28, 29] but not published any details or papers about this work. 

The two verified OS kernels, CertiKOS and seL4, exhibit the two main contemporary ap- 
proaches to kernel development. CertiKOS4 is the Certified Kit Operating System. It is not a 
micro-kernel, but a full kernel with scheduler, file system, and various hardware drivers. It uses 
an intricate layer-based framework to guarantee correctness of the whole kernel, where spe- 
cifications (and components) can be layered on top of each other. Components can be written 
in C or assembler; a fork of the CompCert compiler covers correctness of the linking process as 
well, and guarantees correctness of the whole kernel. All proofs are done in the Coq theorem 
prover. In contrast, seL45 is a microkernel, derived from the L4 family of microkernels. It 
formally proves the isolation of applications running on the system in Isabelle/HOL. There is 
an ecosystems of tools surrounding seL4, e.g. the CAmkES and sDDF framework which allow 
driver development for seL4 [155], but these are not part of the formal correctness proof of 
seL4. 

The verification of device drivers started in earnest with the use of predicate abstraction 
[18, 17]. Predicate abstraction is a technique to reduce the state space of a program to make 
them amenable to model-checking, while preserving the validity of the properties in question, 
such as program safety, memory leaks or conformance to an API protocol. Tools like C2BP 
[18] (part of the SLAM suite) or BLAST [181] implement the technique, and are used for static 
driver verification in Windows [16] and Linux [161] respectively, although the latter seems not 
actively maintained any more. There has been work on formalising network protocols (TCP, 
[169]) or file systems ([170]); more recent efforts include mCertiKOS [41] or Vigor [157]. 

One prominent tool suite for the verification of C programs is Frama-C [111] (even though 
it was not used in any of the papers we have surveyed). In Frama-C, specifications are added 
as specially formatted comments (annotations) in the E-ACSL language. It combines various 
static analysis techniques with the verification condition generator Why3 [63] to prove these 
assertions. It is actively maintained and used in various industrial projects [23]. 

 

programming language and the JVM, has been omitted from this survey, as Java is not a systems programming 
language. It might be interesting to consider a verified JVM as a virtualization layer, allowing user applications 
only on this virtual machine (as in the Android OS); there is work such as [83] (which we did not explore) in this 
direction. 

4http://flint.cs.yale.edu/certikos/framework.html 
5https://sel4.systems 

http://flint.cs.yale.edu/certikos/framework.html
https://sel4.systems/
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Name and Refs Prover Notes 
VeriSoft [47] Isabelle, VCC Used VCC to show separation property of Microsoft 

  Hyper-V hypervisor; not actively maintained any more 
seL4 [113, 179] Isabelle Proves functional correctness and security properties 
CertiKOS c[81] Coq Certified abstraction layers for correctness and safety 
SyberX [207] Isabelle CC evaluation to EAL5+ 
NOVA [24] Coq Proves confinement properties for NOVA hypervisor 
OSEK [56] nuSMV Proves correct configuration of customised kernels 
N.N. [39] Iris, Coq Proves correctness of IPC algorithms for new microkernel 

  at Meta 
VERVE [209] Coq, Boogie Verifies correctness at the binary level by compiling to 

  typed assembly language and showing refinement from 
  abstract model in Coq 

Table 4: Kernel verification efforts. 
 
3.5 Verification of Systems 

A substantial body of work is concerned with the verification and validation of complete embed- 
ded systems; application highlights include the control software for the Chinese lunar rover [180], 
and an ERTMS Railway train spacing system [43]. If industrial standard languages are used 
for verification, they need to be given a formal semantics, e.g. AADL6 [126, 125] or the 
UML [168]. However, most of these efforts focus on the software, constructing a model of 
the software which can be verified [89, 160, 64, 3]. Another approach to verified control soft- 
ware is to generate code, often using control theory [154, 89, 122]; this is lacking a hardware 
angle and so is not considered further in this report. Another left-field area is verification of 
CUDA kernels [145, 58]; although this is low-level according to our definition, we consider 
CUDA not to be essential components of trustworthy systems. 

When verifying complete systems, we need to consider consistency across the hardware- 
software border, i.e. when verifying the correctness of the ISA against its specification, and 
verifying the correctness of the software running on that ISA, we need to be sure that both 
specifications of the ISA are at least consistent. Not a lot of work has been concerned with 
that aspect; in [61] a verification of this kind is carried out for a simple embedded system, 
embedding all the specifications inside one common framework (viz the Coq prover). It seems 
debatable whether this approach scales to larger systems (with an operating system, multiple 
drivers, and user applications running on it). 

 
3.6 Security 

The previous verification efforts are mostly concerned with functional correctness or program 
safety properties. Covering security we review a few papers investigating protection against 

 

6Architecture Analysis & Design Language, an SAE standard for the avionics industry 
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Name and Refs Prover Notes 
Microsoft SDV [16] SLAM Uses predicate abstraction and static analysis to 

 verify safety of Windows device drivers 
Linux SDV [161] BLAST SDV for the Linux eco-system 
mCertiKOS [41] Coq CertiKOS covering device drivers and interrupts. 
SybilFS [170] Lem Provides a model of POSIX file system, derives test 

 orfacles 
[169] HOL4 Provides high- and low-level models of TCP and 

 sockets API, proves correctness, provides validation 
 tests. 

PerSeVerE [118] model-checker Formalizes semantics of ext4 file system,  can 
 model-check programs to use its API correctly. 

[157] Vigor Formal verification of a NAT stack. 

Table 5: Driver verification efforts 

 
side-channel attacks before detailing the CHERI approach. 

The Scam-V tool [147] allows validating observational models (using symbolic execution) 
against real hardware, to detect side channels by generated test programs. [59] uses SMT solvers 
for a similar objective, showing data is perfectly masked. In contrast, [185] formally shows 
(using Isabelle) threat security (absence of data leaks) for weak memory models, in particular 
for ARM architectures. [49] develops a general methodology (in Coq) for the mCertiKOS 
verified operating system for security proofs, using a general notion of observation for e.g. 

state indistinguishability; this approach covers the whole software stack, but does not cover the 
underlying hardware. [87] describes an approach to prevent timing channel attacks, both on the 
hardware and software side. This has been implemented and evaluated for seL4 [73] for the 
x86 and ARM processors, and for RISC-V [203] leveraging additional hardware support. It is 
currently being verified [184]. 

SAFE [12] is a “clean-slate design for highly secure computer systems”, comprising both 
hardware and software, with formal end-to-end proofs of non-interference. The hardware con- 
sidered in SAFE is assumed to have capabilities beyond what one would usually expect from 
an ISA, much in the spirit of CHERI. 

 
3.7 Capability Hardware Enhanced RISC Instructions (CHERI) 

The CHERI approach [205, 202] extends standard ISAs with architectural capabilities that allow 
for a fine-grained access control of memory on a HW-level. These capabilities are unforgeable 
tokens of authority supporting a highly scalable software compartmentalization as well as the 
realization of a secure (i.e. monitored) software (C or C++) pointers. 

In principle, capabilities relate to portions of the address space and define the permissions 
that owners of the capabilities possess on them. They can be marked as invalid (withdrawing 
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the associated permissions) or as sealed (disabling any modifications and usage). Capabilities 
are protected by the architecture of the ISA. They can only be constructed by instructions that 
do so explicitly and new capabilities cannot exceed the permissions or address space of the cap- 
abilities underlying its creation. In particular, this gives rise to a security property of capability 
monotonicity on code execution. The set of capabilities accessible to the code cannot increase 
during its execution (preventing privilege escalations) unless execution is yielded to another 
domain. 

While at boot time the firmware is equipped with initial capabilities covering the entire 
address space, in each stage of the software stack (boot loader, hypervisor, operating system, 
processes, etc.) address space and permissions of the related capabilities will become more 
restrictive in accordance to the monotonicity property. Another property is the intentionality 
of credentials, such that if a process passes a capability as an argument to a system call, the 
kernel can use only that credential to guarantee that no other process memory covered by other 
capabilities of the kernel is accessed. To deal with capabilities, CHERI introduces special and 
general capability registers and adds new ISA instructions operating exclusively on capabilities 
in these registers (ensuring intentionality!). 

CHERI also supports the use of C/C++ language and virtual-memory-based software by a 
hybrid capability architecture to integrate a capability model with a conventional MMU-based 
architecture. In particular, it constrains integer-related memory access by a default data capab- 
ility and instruction fetches by a program-counter capability. 

CHERI extensions to 64-bit MIPS and 32/64-bit RISC-V ISA are specified in the SAIL- 
language (cf. Section 3.1) and are available as open source7. These SAIL pecifications are 
the starting points to derive reference documentations, ISA-level simulators in C or OCaml, 
hardware instruction tests as well as emulators and prover definitions of the architecture for a 
formal verification in Isabelle/HOL, COQ or HOL4 (cf. Figure 4). 

 
 

 
 

Figure 4: Main artefacts of the CHERI engineering process as in [202]. 
 

The CHERI extensions have been formally verified using the Isabelle prover with respect 
 

7CHERI-MIPS:    https://github.com/CTSRD-CHERI/sail-cheri-mips, 
CHERI-RISCV:    https://github.com/CTSRD-CHERI/sail-cheri-riscv 

https://github.com/CTSRD-CHERI/sail-cheri-mips
https://github.com/CTSRD-CHERI/sail-cheri-riscv
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to the various security properties [149]. These are in particular, 1. that they satisfy the mono- 
tonicity and intentionality properties, 2. that arbitrary code cannot change system registers or 
memory without having explicit permissions to do so, and 3. guarantees about the execution of 
untrusted code in a controlled isolation boundary. 

There are two main use cases of CHERI capabilities with respect to C/C++ based software 
stacks concerning fine-grained memory protection and scalable software compartmentalization. 

 
Fine-grained memory protection. The use of capabilities instead of integers to implement 
C/C++-language pointers, and minor extensions to operating system and language runtime- 
system enable a strong and efficient spatial, referential, and temporal memory safety for these 
traditionally memory-unsafe languages. CHERI allows for two compilation modes. In a pure- 
capability mode, in particular all pointer types (of C/C++) are realized by capabilities. Then, 
the architecture preserves the integrity and the provenance of the pointers, thus preventing an 
injection of pointer values from outside or an in-memory corruption of pointers. Narrowing the 
bounds of the address space and restricting permission (typically done by the compiler) prevent 
pointers from being abused for purposes other than for what they were intended. 

 
Scalable software compartmentalization. Following the MILS-paradigm [173], conven- 
tional MMU-based software compartmentalization decomposes larger software applications 
into components running in isolation and communicating only in a controlled way. Capabilities 
open up an alternative means to construct the software isolation and controlled communication 
required to implement compartmentalized software designs. Unlike MMU-based compartment- 
alization (i.e., implemented using virtual memory), capability-based techniques allow for more 
granular and scalable data sharing, as they are restricted by page-granularity sharing and the 
utilization of multiple address spaces and thus the number of compartments. 

CHERI comes with an adapted reference stack for its architecture realizing the benefits of 
capabilities. This includes extended versions of the real-time operating system FreeRTOS and 
the BSD-based operating system FreeBSD as well as its own CheriOS microkernel demonstrat- 
ing in particular granular compartmentalization together with strong memory safety. Common 
developer tools like Clang/LLVM compiler, LLD linker and GDB debugger are extended to 
support the CHERI architecture. Finally, various extended user-space libraries and applications 
are also available. 
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The state of the art can be summarized as follows: 

• Established instruction set architectures are the x86 and ARM families, and 
more recently RISC-V. For all of these, formalizations and verification support 
are available. The SAIL language and framework allow convenient tool devel- 
opment for all ISAs. 

• C is the lingua franca of system development, and has been investigated thor- 
oughly. There is a verified C compiler, CompCert, and a number of verification 
tools such as Frama-C, or specialized theories for Isabelle or Coq. 

• There are at least two verified operating systems, seL4 and CertiKOS, which 
have left the prototype stage and are actively supported. 

3.8 Summary 
 

 

The state of the art covers all layers of interest in Figure 1. We consider all tools to be at 
least at TRL 5 as defined in the Horizon 2020 work programme8. However, there are still open 
questions which need to be adressed. This will be the subject of the final section. 

 

4 Research Needs and Roadmap 

4.1 Research Needs 

In Figure 5, we have mapped the results of our survey in the last section to the system layers 
in Figure 1. Note that the major points for a trustworthy system in the hardware-software 
region are covered — there are verified operating system kernels, a verified compiler for the 
most widely used language, C, and three major instruction set architectures which have been 
formalized and verified (marked in green in Figure 5). However, we can also see that there are 
necessary parts of a system which are not verified (these are marked in red). The most relevant 
gaps here include: 

• hardware drivers: CertiKOS integrates drivers into the kernel and has support for the veri- 
fication of the driver and the whole kernel; it remains to show this scales well in practice. 
seL4 handles drivers outside the trusted kernel, relying on the kernel for correctness. 

• memory buses: there is a lot of work on memory buses, but it needs to be extended to cover 
complex memory protocols and configurations as found in complex SoCs and systems. 

• peripheral devices: there is scant work on handling connection to peripheral devices, e.g. 

hard disks, but we cannot simply disregard these. 
 

8http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/ 

h2020-wp1415-annex-g-trl_en.pdf 

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
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Figure 5: Trustworth systems and tooling landscape. 

 
Moreover, the verified parts are as yet not coupled together in a comprehensive manner, 

nor is there a systematic way how the verification can connect to verified parts in the hardware 
(microarchitecture), or user applications. For the microarchitecture, while we know how to 
specify the ISA and verify its functional correctness, the connection of the SAIL language to 
hardware description languages, in particular innovative new ones like Chisel or SpinalHDL, 
needs improvement. The connection to user applications needs more work: essentially, it needs 
a comprehensive specification of what an operating system does. Of course, seL4 and CertiKOS 
have formal specifications, but it is unclear (and unlikely) if they are sufficient. The situation 
gets even more interesting when we consider security aspects, such as confidentiality, privacy 
or compartmentalization. Proving such properties formally will require more comprehensive 
specifications, and specification formalisms covering the whole system stack, possibly even 
across the software-hardware border; the CHERI extension built on SAIL (cf. Section 3.7) is a 
good starting point in that direction. 

A further question to consider is licensing. Most of the tools and components mentioned 
above are available under open-source licenses. We posit that open-source licenses are crucial 
for a trustworthy environment, as they allow users and developers to analyse and scrutinize 
the source code to assess its correctness. In theory, it might be sufficient to provide a formal 
specification of the interface along with a formalized proof of correctness, but this has not been 
shown to work with substantial developments or security properties. On the hardware side, 
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Table 6: Suggested best-of-breed tools and system components. 

 
proprietary IP such as ARM cores might be of more use, given that they are delivered in source 
form, and thus at least susceptible to automatic analysis techniques. 

Finally, one needs to consider long-term viability of both the components and the devel- 
opment tools. The x86 ISA is by now dated and very complex, as a result of maintaining 
backwards compatability for fourty years; its long-term prospects are unclear.9 The long-term 
prospects of ARM and RISC-V look much better (even if the latter is still lacking widespread 
industry acceptance). As for languages, the C language has been with us for fifty years, and will 
probably stay with us for another fifty. It is supported by several excellent compilers, including 
CompCert. Other languages such as Rust which might take up the mantle as premier system 
programming language are still young and one-compiler languages. This is a problem in the 
long run; for long-term viability we need diversity on the supply side, being able to choose 
among different compilers, or in the case of hardware, OEMs.10 This lack of diversity may 
be a problem for the long-term viability of verification proofs as well. Both Coq and Isabelle 
are built using a specific compiler (Coq uses OCaml, Isabelle uses Poly/ML), with which they 
interact quite closely; and both provers, although open-source, are maintained by a small group 
of academic volunteers. None of this discussion means tools and languages such as Rust, Isa- 
belle or Coq should not be considered, but one should be aware of these issues, and investigate 
possible alternatives. This in particular means to provide well-defined interfaces between com- 
ponents, specified in a language which is not dependent on any one tool. (SAIL is a good 
example of this; a framework like Frama-C and its specification language E-ACSL could be the 
basis for a similar rôle for software verification.) 

To sum up, for the hardware-software interface we have a number of languages and tools at 
our disposal; Table 6 gives an overview of the best-of-breed which can serve as a basis to build 
an ecosystem of trustworthy systems. 

 
4.2 Roadmap 

Based on the discussion in the previous section, we will lay out a roadmap of research projects 
focussed on the hardware-software interface. We classify projects according to their risk and 

 

9In particular given Intel’s recent announcement of a billion-dollar investment in RISC-V 
https://www.electronicdesign.com/technologies/embedded-revolution/article/21216435/ 

electronic-design-intel-launches-1-billion-fund-to-build-foundry-ecosystem-backs-risc. 
10This makes ARM viable in the long term, because there are a lot of hardware suppliers for ARM-based 

hardware. 

Verified OS kernel 
Verified C compiler 
ISA specification and verification 
Verified CPU cores 
Provers 

seL4, CertiKOS 
CompCert 
SAIL 
diverse RISC-V cores 
Isabelle, Coq 

https://www.electronicdesign.com/technologies/embedded-revolution/article/21216435/electronic-design-intel-launches-1-billion-fund-to-build-foundry-ecosystem-backs-risc
https://www.electronicdesign.com/technologies/embedded-revolution/article/21216435/electronic-design-intel-launches-1-billion-fund-to-build-foundry-ecosystem-backs-risc
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Figure 6: Classification of research projects. 

 
the time horizon in three categories (Figure 6): 

 
(i) Small projects have a clear technological focus, which fill gaps in the tool and component 

landscape. They do not require major new research or large developments. These are low- 
risk (it is highly likely they will succeed in the stated goal), and require something like 6 
to 12 person months. 

(ii) Technology research & development are medium-sized projects where new technologies, 
algorithms or tools need to be developed. They are of medium risk (they may fail, but with 
appropriate risk management some of the research efforts should always be recovered), 
and take times between 36 and 72 person months (typically, three years with one to three 
persons). These are the typical BMBF-funded projects. 

(iii) Foundational research is research where at the start not much more than basic research 
questions are known, and the project develops foundations, methodologies and tools to 
solve the question. Comparable to DFG-funded projects, these are of high risk (they 
are as likely to fail as to succeed, but they should fail productively, providing a negative 
answer to the research question) and last anytime between 24 and 50 person months. 

 
4.2.1 Small Projects 

These are small projects with a well-defined scope, using existing technologies and methods. 
Following are a few suggestions: 

 
(S-1) Extend SAIL with support for functional HDLs like SpinalHDL, Chisel or Clash. Presently, 

SAIL can generate tests as System Verilog Assertions, but if one wants to verify conform- 
ance of a SpinalHDL design, one needs to manually translate the SAIL specification to 
SpinalHDL. 

(S-2) Connect SAIL to riscv-formal and Symbiyosys. This would integrate SAIL, and the ’gold 
standard’ RISC-V specification in SAIL, to the existing RISC-V tool. 
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(S-3) Provably correct RISC-V ISA specifications. The RISC-V specification generated from 
the SAIL specification in Isabelle via Lem is not very readable or friendly to work with. 
In order to be able to better work with it, we can define a more succinct spec directly in 
Isabelle and formally show equivalence with the generated specification. 

(S-4) Rebase the seL4 verification to SAIL. The current seL4 verification is based on the ISA 
modelled in Isabelle/HOL. It needs to be investigated whether it is easier to replace this 
ISA model with the specification of the RISC-V ISA specification from the previous 
project, or whether one proves equivalence of this specification and the official RISC-V 
ISA separately. 

(S-5) Connect SAIL to existing virtual prototypes. There exist a number of virtual prototypes, in 
particular for RISC-V systems, but most of them are based on independent formalizations 
of the RISC-V standard; connecting them with the existing SAIL standard would give 
increased confidence. 

(S-6) Virtual prototyping support for CHERI. In a similar vein, adding support for the CHERI 
extensions to existing virtual prototypes for RISC-V would open the way to develop 
software making use of these extensions before RISC-V hardware supporting CHERI is 
available. 

(S-7) Connect CompCert with SAIL. The CompCert compiler has its own model of the binary 
code produced at the end; connecting this to existing SAIL standards would close a gap 
and contribute to an idea of overall correctness. 

(S-8) Extend SAIL with support for Rust. Currently, SAIL supports C and OCaml, but support 
for Rust in the same form as with C would help with developing system software in Rust. 

 
There may be more, similar projects here that will come up during the more long-term pro- 

jects sketched in the following. It makes sense here to set up a framework where these projects 
can be applied for and granted in an agile, light-weight way, as for example with Google’s 
Summer of Code projects. These would also serve as good student projects. As students are an 
import avenue of dissemination, we recommend setting aside funding for this specific purpose. 

 
4.2.2 Technology Research & Development 

Other gaps in the tool landscape require a more comprehensive effort. These are the main gaps 
that we have identified: 

 
(R-1) Comprehensive verification of a realistic embedded system, e.g. a router. This would 

show how the tools work together, and identify further gaps in the landscape; it would 
also indicate how to structure a fully verified system, and how to connect the tools. As 
opposed to [61], this system would preferably not be implemented in one single theorem 
prover, but connect the different provers and formalisms from the tool landscape. 
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(R-2) Safe and secure peripherals. Components such as network stacks or file systems are 
essential to any operating system. There has been early work in this direction [169, 170]. 
A fully verified implementation of a network stack and POSIX-compliant file system is 
a substantial effort, and still lacking. 

(R-3) Drivers and peripherals for seL4. There is already work on how to implement drivers for 
seL4, and how to extend seL4 to a full operating system ([155], cf. discussion above on 
page 15), but this has to the best of our knowledge this has not been subject to formal veri- 
fication (as opposed to CertiKOS [41]). After setting up a methodology to add drivers, 
integration of the results of the previous project would seriously enhance seL4’s verified 
capabilities. 

(R-4) Extend Frama-C with ownership types and capabilities. There is research in extending 
C with ownership types, bringing the benefits of Rust into the C world. In this project, 
it should be investigated how Frama-C, and in particular its specification language can 
be extended to that effect; the ownership types would be the software equivalent of the 
hardware capabilities on the CHERI side. The project would require 

• defining a suitable annotation syntax and semantics; 

• adding support to Frama-C to check these annotations; 

• or adding support to the prover tools (the Jessie plug-in, which is currently not 
actively maintained). 

When successful, this would extend Frama-C as a development and verification interface 
for CHERI-based code. 

(R-5) A formally verified virtual prototype. Virtual prototyping has proven a valuable tool 
in early software development, i.e. developing software for hardware which is under 
development. However, none of these have been formally verified to the extent that 
e.g. CompCert has. Such a formally verified VP would be a valuable addition to the 
ecosystem. 

(R-6) A formally verified Rust microkernel. In order to diversify the ecosystem in terms of 
language support, develop a fully verified microkernel in the Rust language. This is a 
good test for the tool support of Rust, in particular the verification support (the Rustbelt 
tool) and if the fragment of Rust covered by verification support is large enough. Of 
particular interest would be how to integrate external modules into the kernel, as Rust 
can distinguish between safe and unsafe code; it would be favourable if driver code could 
always be safe. 

 
4.2.3 Foundational Research 

Beyond filling gaps, there are some issues that require a more foundational approach. 
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(X-1) Comprehensive security. Much of the discussion and projects in the previous section, 
as much of the previous work on formal verification from Section 3, is concerned with 
functional, and to a lesser extent, non-functional correctness. The software tool stack (as 
well as its underlying basis in hardware) is aligned to efficiently support the realization of 
a given functionality but provides only few means (if any at all) to explicitly constrain an 
(automated) refinement process by demanding non-functional or security requirements. 
An example would be to demand that information stored in particular variables must 
not influence the generation of communication messages. In this situation, a compiler 
should adjust the intended memory allocation of variables within a program according 
to the formulated security needs and in line with the security measures provided by the 
hardware. CHERI is a good start in this direction, and can serve as an anchor to develop 
a tool stack which provides means for formally verified security. The main task would 
be to lift the guarantees provided by the hardware via the ISA into security notions on 
higher level (user applications). This includes the development of a vocabulary of secur- 
ity notions on the programming level and of compiling techniques to refine these notions 
into sufficient requirements on an ISA-level. Subsequent steps include investigating if 
CHERI is powerful enough to support these aspects, or needs extending. There is also 
the aspect of extending the verification tools in the landscape to handle CHERI. The end 
vision here is a system with formally verified secure enclaves. 

(X-2) Reference architecture for trustworthy systems. In the long run, the actual components 
of a safe and secure, fully verified computing landscape are not as important as the inter- 
faces between them. Single components will always become out of date over time, and 
may need to be replaced, but the basic interfaces will remain stable. This concerns 

• the hardware-software interface (the ISA), 

• the memory bus and other busses connecting peripheral devices to the CPU, 

• the interface of the kernel to the various driver modules, 

• the interfaces of major operating systems (such as file systems and network stacks), 
and 

• the interface of the operating system kernel to the user applications. 

It extends beyond the components to the tools. A reference architecture should specify 
specification and modelling languages, independent of the tools (provers) used.11 

The reference model should include comprehensive tests, and where possible automatic 
prover tools, for all components, in particular for drivers, as in the Microsoft SDV. This 
is particularly relevant, as drivers are a frequent source of erroneous behaviour (in par- 
ticular, system crashes). 

 

11One will probably need to fix the programming language for practical reasons, but should strive for multi- 
language support. 
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Project depends on 
R-1 S-1, S-2, S-5, S-6 
R-2 S-1, S-2, S-3, S-7 
R-3 S-3, S-4, S-7 
R-4 S-3, S-7 
R-5 S-1, S-2, S-5, S-6 
R-6 S-3, S-8 

Project depends on 
 

 

X-1 R-1, R-2, R-4, R-5 
X-2 R-1, R-2, R-3, R-4, R-5 
X-3 R-1, R-2, R-3, R-5, R-6 

 

Table 7: Dependencies between proposed research projects. 

 
(X-3) Proof engineering: how to structure and conduct huge formal proofs. A formally verified 

ecosystem of trustworthy systems relies on formal proofs, but there is not much work as 
yet on the construction of such proofs. Early pioneering efforts such as the proofs of the 
Four Colour theorem, the Kepler conjecture or the Feit-Thompson theorem have been 
heroic efforts by sole individuals rather than concerted group efforts, as opposed to the 
situation in hardware or software development, where e.g. the Linux operating system 
has seen countless contributors over the years. 

There have been a number of papers and efforts to remedy this situation [114, 171, 148, 
99], but most of these are specific to particular provers or application areas. What is 
lacking is a general approach which covers more foundational questions, such as what 
makes a good prover and prover language, how can we refactor and reuse proofs, or 
how should one approach big formal proof efforts, aside from tools supporting these 
questions. 

 
4.2.4 Dependencies and Priorities 

There are dependencies among the research projects proposed in the following sections, which 
are summarized in Table 7. These dependencies should be seen as supportive rather than con- 

ditiones sine quibus non. 

We also suggest the following priorities, depending on the general overarching goal: 

R-1 

X-1 
R-2 
 

 
R-3 

X-2 

R-4 
 

 
R-5 

X-3 

R-6 S-8 

S-7 

S-6 

S-5 

S-4 

S-3 

S-2 

S-1 
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• Formal software and hardware verification has left the laboraty, and can be used 
productively on real system software such as operating system kernels. 

• However, the landscape of existing verified systems has still considerable gaps 
which need to be filled: hardware drivers, memory buses, peripherals, to name 
a few. 

• In particular as far as security is concerned, verification across the hardware- 
software interface is still a challenge. 

• To create a formally verified and secure operating system ready for the end-user as soon 

as possible, we pick one candidate — most likely seL4 — and complete the missing 
pieces. This could then serve as the blue-print for the reference architecture. 

Priorities: R-1, R-2, R-3, R-5; X-2 

• To create an ecosystem of companies, start-ups, research institutes and university groups 

focussed on trustworthy IT, a diversity and breadth of approaches need to be considered 
instead of focussing on one particular operating system with corresponding prover and 
verification methodology. Interoperability and standardized interfaces will be crucial to 
allow exchange of ideas, implementations, and tools. 

Priorities: R-1, R-2, R-4, R-5, R-6: X-1, X-2. 

• To establish the foundations of trustworthy IT, a diverse approach with a more long-term 
perspective is needed. Verification efforts for drivers and peripherals are seen case studies 
by which we can study the underlying mechanisms, and how to improve our formalisms 
and tools. 

Priorities: R-4, R-5, R-6: X-1, X-3 

 
4.3 Summary 

 

 

We propose a diverse structure of many different, perhaps even competing projects to fill 
these gaps instead of one central development. We posit that creating the capabilities to produce 
verified software, and stable interfaces between the components of an ecosystem of verified 
tools, creates more long-term impact than a one-off creation of one verified system. 
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Formal Methods, Lecture Notes in Computer Science, pages 788–798, Cham, 2021. 
Springer International Publishing. 

[208] Xiangzhe Xu, Jinhua Wu, Yuting Wang, Zhenguo Yin, and Pengfei Li. Automatic Gen- 
eration and Validation of Instruction Encoders and Decoders. In Alexandra Silva and 
K. Rustan M. Leino, editors, Computer Aided Verification, Lecture Notes in Computer 
Science, pages 728–751, Cham, 2021. Springer International Publishing. 

[209] Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated verification of 
a type-safe operating system. In Proceedings of the 31st ACM SIGPLAN Conference 

on Programming Language Design and Implementation, PLDI ’10, pages 99–110, New 
York, NY, USA, June 2010. Association for Computing Machinery. 

[210] Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and Andrew C. Myers. PDL: 
A high-level hardware design language for pipelined processors. In Proceedings of the 

43rd ACM SIGPLAN International Conference on Programming Language Design and 

Implementation, PLDI 2022, pages 719–732, New York, NY, USA, June 2022. Associ- 
ation for Computing Machinery. 

https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal


Lüth, Hutter, Funck, Zielasko: Ecosystem for Trustworthy IT 

— 51 — 

 

 

A Literature Survey Statistics 

We have surveyed the following conferences: 

 
• International Symposium on Formal Methods (FM) 

• International Conference on Computer Aided Verification (CAV) 

• International Symposium on Principles of Programming Languages (POPL) 

• International Conference on Programming Languages Design and Implementation (PLDI) 

• NASA International Symp. on Formal Methods (NFM) 

• International Conference on Interactive Theorem Proving (ITP) 

• International Conference on Certified Programs and Proofs (CPP) 

• International Conference on Formal Methods in Computer-Aided Design (FMCAD) 

• International Conference on Tools and Algorithms for the Construction and Analysis of 
Systems (TACAS) 

• International Workshop on Instruction Set Architecture (SpISA 2019) 
 
 
 

We did not count the total number of publications, but with an estimate of 50 papers per 
conference, for nine conferences and ten years we get a total of roughly 4500 papers which 
form the basis of our survey (plus the once-off SpISA 2019 workshop with ten papers). 

From these, we selected 120 papers for closer inspection (going by their title and abstract). 
These form the basis of our survey, and most of them are in the bibliography of this report; the 
bibliography also includes other work as we saw fit. It is of course not complete, in particular 
there are a number of historical papers which we omitted. 
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