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This study provides an overview on methods of formal hardware verification in view of relevant
security objectives for the basic IT elements in hardware at the microarchitectural level. We derive the
targets of sign-off security verification from an analysis of common hardware weaknesses and the
relevant security requirements for microarchitectures. The study relates these targets to the state of
the art in formal hardware verification and describes strengths and weaknesses of different methods
and methodologies. This leads to research recommendations for formal security verification of
hardware.
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1. Introduction — Microarchitectural Security of Hardware

Ever since the invention of the first microprocessor in 1971, our society’s reliance on electronic
computing systems has been increasing at an accelerating pace. Computing systems ranging from small
embedded systems to high-end server computers are part of the critical infrastructure for almost all
industrial sectors, governmental and public institutions as well as for private life. System-on-Chips
(SoCs) and embedded systems are ubiquitous in the modern society; with their abundance of
connectivity features they create a new attack surface for cyber-attacks.

Our trust in computing systems, whether it regards the proper functioning of a power grid or the
confidentiality of industrial data in edge computing, depends mainly on the provided safety and
security features of the underlying computing system. Although the majority of the advanced security
features, such as end-to-end encryption, are implemented at the software level, they rely on basic
hardware primitives to deliver the intended functionalities. For example, encryption can be rendered
useless if the hardware system does not provide a secure memory isolation ensuring the confidentiality
of the encryption keys. In common terminology, such hardware primitives form the “root-of-trust” of
the computing system. They constitute a set of trusted functionalities to ensure the security of the
system. Design verification of these hardware parts is especially critical. Any security flaw in the
hardware root-of-trust can affect virtually all applications deployed on the system.

Hardware systems are difficult or, in some cases, even impossible to patch, which exacerbates the
challenge of dealing with hardware security flaws. Countless reports in recent years on system
vulnerabilities at the hardware level, e.g., [1], [2], attest to the fact that hardware security flaws can
pose a genuine threat to the overall system security. The Common Weakness Enumeration database
(CWE) [3] has acknowledged this problem by including hardware vulnerabilities as a separate category
of security weaknesses.

The role of hardware in system security is not limited to providing security-related features to support
software functions. Weaknesses in the hardware design itself can introduce severe vulnerabilities to
the computing system. At the microarchitectural level, these weaknesses mostly have two sources: the
hardware circuit executing a security-critical software application may leak confidential information
through side channels, in particular timing of the software execution [4], or (possibly very subtle)
design bugs escape conventional verification procedures and cause security risks for the entire system.

In this Lot, we focus on the formal verification of hardware security requirements at the
microarchitectural level. Microarchitectural descriptions at the Register Transfer Level (RTL) are the
point of reference for sign-off verification before the tape-out of a chip for manufacturing. Therefore,
RTL descriptions of the microarchitecture typically serve as the golden model of an SoC and are the
basis for all design refinements at lower levels as well as for manufacturing. Security issues at these
lower levels, especially those related to the supply chains, are subject to Lot 4.

2. Security Goals — Microarchitectural Security Risks and Verification Objectives

Formal security verification at the microarchitectural level requires well-defined verification targets
covering all security risks or threat models that are relevant for a chip’s intended deployment domain.
A threat model reflects the global security requirements for a system, such as confidentiality and
integrity and the “attacker profile” describing the capabilities of a potential attacker to interact with
the system and to attack a certain category of vulnerabilities. The appropriate formalization of the
relevant threat models, i.e., the specification of properties to be verified, is one of the main challenges
in security research.



In the following, we provide an overview on security vulnerabilities in hardware, common security
targets and the role of threat models. While security vulnerabilities are inherent to the design under
verification, security targets and the profile of a potential attacker must be defined by the verification
engineer based on knowledge about the environment in which the chip will operate.

2.1. Security Vulnerabilities

Formal security verification must address a wide spectrum of potential security HW vulnerabilities. In
the following, we consider these vulnerabilities and related verification challenges. At the
microarchitectural hardware level, there are two main categories of hardware vulnerabilities that can
be distinguished: security-violating design bugs and microarchitectural timing side channels. In the
latter category, so called transient execution side channels have recently received great attention.

2.1.1. Security-Violating Design Bugs

Security-violating design bugs are the subset of all design bugs that, besides violating the functional
specification, violate a relevant security target. These bugs corrupt, for example, the functionality of
memory protection mechanisms or some advanced security feature like information flow tracking.
Throughout this study, the discussion of functional design bugs holds (unless noted otherwise) also for
trojans present in the RTL (cf. Sec. 3.2.2.2). Trojans inserted after RTL sign-off, however, require
additional measures. This is subject of the study for Lot 4.

In principle, security-critical design bugs (and RTL trojans) can be detected by conventional functional
verification. However, this requires the complete and correct specification of the entire design as well
as of all its security mechanisms. Substantial effort is demanded from verification engineers to cover
all security-relevant functional behaviors by a set of properties. In many practical settings, this effort
is considered prohibitively large, especially, since it is not sufficient to restrict this exercise to only the
processor. Also all peripherals must be covered. Even when all modules of an SoC have been treated,
verification gaps may still remain: Since functional properties are usually formulated locally for
individual SoC modules, security issues related to the communication between modules or to the
interaction between hardware and firmware are easily missed [5]. The challenges of the functional
verification paradigm to security verification are further discussed in Sec. 3.2.

2.1.2. Microarchitectural Side Channels

The problem of side channels in hardware has been subject to research already for decades. It has
been understood that the same degrees of freedom that a designer may use for optimizing a design at
the microarchitectural level may lead to side effects that can be exploited in security attacks. At the
microarchitectural level, side channels are based on timing. Although a program may not have access
rights to a certain set of data, depending on this data, one and the same program may behave slightly
differently in terms of its own computation results, i.e., what data it stores in which registers and at
which time points. These differences only affect the detailed timing of the microarchitectural
implementation and have no impact at the level of the instruction set architecture (ISA), i.e., they do
not affect the correct functioning of the program as seen by the programmer. However, if these subtle
alterations of the program’s execution at the microarchitectural level are caused by secret data to
which the program must not have access, this may open a “side channel”. An attacker, owning (and
creating) such a program, may trigger and observe these alterations to infer secret information. This is
called a “microarchitectural side channel attack”.

2.1.2.1. “Classical” ISA-visible Timing Side Channels

Generally, in microarchitectural side channel attacks, the possible leakage of secret information is
based on a microarchitectural resource that creates a timing information channel between different
software processes that share this resource. For example, the cache can be such a shared resource and
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an attacker can observe timing variations when accessing the cache based on the victim's cache access
pattern. Various cache-based attacking schemes have been reported which deduce critical information
from the footprint of an encryption software on the cache [4], [6], [7], [8], [9]. Also, other shared
resources can be (mis-)used as the channel in a side-channel attack, as has been shown for DRAMs [10]
and other shared functional units [11].

The following observation is key to classifying microarchitectural side channels and the corresponding
verification targets (properties): In the attack scenario described above, the attacker process by itself
is not capable of controlling both ends of a side channel. In order to steal secret information, it must
interact with another process initiated by the system, the “victim process”, which manipulates the
secret and “makes a noise”. In addition, the attacker must possess detailed knowledge about the victim
software in order to make a meaningful correlation between the observed side channel and the
victim's secret assets. Because of these prerequisites, the scope of a side channel attack may be limited
to specific software components. While the detection and removal of such side channels in hardware
may be beneficial in certain cases, possible defense mechanisms can benefit from their visibility at the
ISA level and may rely exclusively on remedies at the software level (cf. Lot 1 and 3). Such remedies
are typically applied to security-critical software components like encryption algorithms. Common
measures include constant-time encryption [12] and cache access pattern obfuscation [13]. They
prohibit the information flow at the “sending end” of the channel, i.e., the one owned by the victim
process.

Although securing encryption software against these attacks is challenging because it demands a deep
understanding of microarchitectural details, in the past, the threat of microarchitectural side channels
was generally perceived to be limited to a small set of software applications. This general intuition,
however, was drastically changed by the discovery of transient execution side channel (TES) attacks.

2.1.2.2. Transient Execution Side Channels (TESs)

Despite using similar channels for exfiltrating information, TES attacks are fundamentally different
from classical microarchitectural side channels. TES attacks exploit side effects of transient instruction
execution, a phenomenon not visible in the sequential execution semantics of the ISA. Similarly like a
factory attempts to maximize its productivity by keeping all its machines running as much as possible,
modern processors attempt to maximize the use of their hardware units to achieve highest possible
computing performance. Therefore, processors can reschedule the instructions of a program and may
“transiently” execute instructions ahead of time, without ensuring whether or not the flow of the
program actually reaches those instructions. If such “speculation” turns out to be wrong, i.e., the
transiently executed instructions are not part of the correct program flow, the processor discards their
results.

In a TES attack an attacker exploits advanced microarchitectural features, such as speculative
execution or out-of-order execution, to transiently execute a sequence of instructions. This transient
instruction execution may leak secret data through timing side channels and is the root cause for TES
attacks. Without affecting the ISA-level results of the program, the attacker triggers transient
executions of instructions that depend on secret data. In this way, the attacker does not rely on a
vulnerability within a victim software to make a noise. In fact, the TES attacker controls both ends of
the channel, the part that triggers the side effect and sends out the information as well as the part that
observes it. This makes TES attacks more threatening than the earlier known timing side channels of
Sec. 2.1.2.1. Inthe TES scenario, a single user-level attacker program can establish a microarchitectural
side channel leaking parts of the memory which are not accessed by any other program. Such HW
covert channels not only can destroy the usefulness of encryption and secure authentication schemes
but can steal data from essentially anywhere in the system. As a result, unlike classical side channel
attacks, TES attacks threaten the overall security of the system and its root of trust.



The first TES attacks to be discovered were Spectre [14] and Meltdown [15] which made world-wide
headlines in 2018. The variety of attacks using TESs discovered since then (e.g., MDS attacks [16], [17],
[18]), speculative store bypass [19], speculative interference [20]), with many of them targeting a
previously patched system (e.g., Fallout attack [16]), has proven that the threat by TESs is not limited
to Spectre and Meltdown and generally calls for new attention towards hardware security.

2.1.3. Side Channels at Physical Levels

Also side channels related to the physical implementation of a chip can cause severe concerns. This is
true in particular for power side channels [21], [22]. Note that techniques of formal hardware
verification, at least in their present form, operate at the logic design levels, typically at the RTL or
above. Therefore, only little research has been reported how formal methods can contribute a
mitigation of physical-level weaknesses.

Attacks at the physical level extract functional or non-functional information from analog signals.
Checking whether or not secret information can be leaked therefore calls for methods operating at the
physical or analog levels of the system. Formal analog verification, however, is in its infancy. Digitizing
analog signals to make them suitable for conventional (digital) formal verification creates problem
instances of enormous complexity. Instead, formal methods can have promise when applied to verify
defense mechanisms that are implemented at the logical level, such as masking [23] or balancing [24].
This may result in specialized methods that can be integrated into a verification flow for security, as
discussed in Sec. 3.5. Abstracting from physical behaviors, however, bears the risk of missing security
gaps that are not modeled by the formal tool, for example, as demonstrated by [25] for the work of
[26].

In summary, while new and promising ideas may be emerging, the question whether or not formal
hardware verification can be a general new research area for physical-level side channel detection is
of speculative nature. It is therefore not further elaborated in this study.

2.2.Security Targets — Confidentiality and Integrity

Confidentiality and integrity are commonly considered the most relevant security targets for hardware.
In the software domain it is common to also consider availability as a third security target. In the
hardware domain it is common to subsume this notion under integrity, as becomes apparent from the
following discussion.

Confidentiality of hardware is given if all information stored or processed in the system is protected
against being retrieved by an unauthorized entity.

Integrity means preventing an attacker from changing or influencing a part of the system that is
specified as protected. Similarly as in the software domain, where integrity forbids the unauthorized
modification, deletion or insertion of data, we can understand integrity in hardware as the integrity of
information. Specifically, this means that a set of protected registers and memory locations cannot be
overwritten by an unauthorized entity. Since hardware, as opposed to software, is a physical system,
the notion of integrity is commonly defined to have a wider scope. Attackers with physical access to
the system may influence the system physically, for example, by manipulating voltage levels or by
other physical fault injection techniques. Therefore, besides the integrity of information there is
another relevant class of integrity goals in hardware which we can subsume under the notion of
integrity of operation. Integrity of operation is maintained if an untrusted entity cannot change the
result or timing of a protected operation in the system. Note that this also includes the availability of
security-critical functional resources.

Besides physical attacks, another relevant threat to the integrity of hardware results from the
integration of third-party components into the system. Intellectual Property (IP) modules from
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untrusted sources bear the risk to maliciously influence security-critical operations of protected SoC
components.

Further security targets may be of importance and are often considered as subordinate goals of
confidentiality and integrity. We provide two examples:

Authenticity
Authenticity ensures the correct identification of communication partners as well as the
authenticity of data. This is achieved by a verifiably correct authentication process determining
whether the credentials given by a user or another system component are authorized to access the
resource in question.

Privacy
Privacy refers to the objective to keep some or all processing of a system user secret to the rest of
the system. This may involve the anonymity of the user. Verifiable measures for privacy include for
example cryptographic techniques and trusted execution environments [27], [28]. The correctness
of HW/SW interaction usually plays a major role when ensuring privacy.

2.3.Threat Models

A threat model for hardware captures the security requirements for a system in combination with a
profile of the attackers. The attacker profile makes assumptions about how attackers can access the
system and what methods they can use to exploit potential vulnerabilities of the system. For example,
an attacker may access the system by running an unprivileged user process. Another threat model may
consider access to the security-critical system through a third-party IP which is added to the system
and which the attacker controls (cf. Sec. 2.2). Specific threat models are the basis for the specification
of verifiable properties. The challenge consists in formulating these properties in such a way that a
large spectrum of different threat models is covered by a manageable set of properties.

011 111

0, O
101
Threat models
001 101 * Attacker-
J A
SoC controlled IP
« Fault attack

010 10

N I

Side Channels

OOOL 100]
Functional Bugs
Confidentiality Integrity
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Figure 1: Space of threat models



Figure 1 illustrates the space of threat models that must be analyzed for specifying verifiable properties. The points
associated with important threat models are marked in green color. Firstly, we must distinguish different kinds of security
vulnerabilities. As elaborated in Sec. 2.1, it is meaningful to distinguish between security-violating functional bugs and non-
functional vulnerabilities, in particular side channels. This is the blue dimension in the shown space. This distinction is
reasonable since, by their definition, side channels are not detectable by any functional verification, such as conventional
formal hardware property checking (cf. Sec.3.5). At the microarchitectural level, these side channels could be further divided
in sub-classes such as TESs and other channels, as described in Sec. 2.1. For simplicity, we do not display these additional
dimensions and restrict the illustration of

Figure 1 to a three-dimensional cube.

The vertical dimension (red color) of the cube in
Figure 1 distinguishes between vulnerabilities that occur only in cores and those requiring a global

analysis of the entire System-on-Chip (SoC). For example, TESs, such as Spectre and Meltdown, only
require an analysis of the core while the root cause of other types of timing side channels can be
distributed over several locations of the SoC. The distinction along this vertical dimension has a large
impact on the kind of formal analysis that must be performed. While specialized methods exist
specifically for cores, the analysis of the entire system demands more complex procedures typically
based on compositional principles.

Thirdly, the horizontal axis of the cube separates threat models related to the security target of
confidentiality from those related to integrity. While there exist well-defined notions of confidentiality
in hardware, the formalization of hardware integrity can be more demanding and requires a careful
analysis of the attacker profile relevant for the hardware’s intended deployment domain. For example,
in some scenarios a primary concern results from the integration of untrusted third-party IPs into an
existing and trustworthy platform. In other scenarios, such as chipcard applications, fault attacks (e.g.,
by laser light) corrupting the system can be of particular concern.

We give some examples of threat models related to specific points of the cube in

Figure 1:

¢ Point 010
Threat Model 010
Security target: Confidentiality of data in protected memory locations
Attacker Profile: Attacker can run any program on the core with user-level privileges
Class of vulnerabilities: Transient Execution Side Channel in cores

«» Point 011
Threat Model 011
Security target: Confidentiality of data in protected memory locations
Attacker Profile: Attacker can run any program on the core with user-level privileges
Class of vulnerabilities: ISA-visible timing side channels in core or peripherals

¢+ Point 001
Threat Model 001
Security target: Confidentiality of data in protected memory locations
Attacker Profile: Attacker can run any program on the core and can access peripherals
with user-level privileges
Class of vulnerabilities:  Functional design bugs (or trojans)

Note that several threat models can belong to each point in the space of
Figure 1, for example:



«»* Point 101

Threat Model 101a

Security target: Integrity of information and integrity of operation in security-critical
parts of SoC
Attacker Profile: Attacker controls a third-party IP which communicates with the

security-critical SoC domain
Class of vulnerabilities: Design bugs (insufficient protection mechanisms)

Threat Model 101b

Security target: Integrity of information and integrity of operation in security-critical
parts of SoC
Attacker Profile: Attacker can inject faults by laser light anywhere in the SoC

Class of vulnerabilities:  Design bugs (insufficient protection mechanisms)

Threat Model 101c

Security target: Integrity of information and integrity of operation in security-critical
parts of SoC
Attacker Profile: Attacker can inject faults by laser light anywhere in the SoC and can

run any program on the main core with user-level privileges
Class of vulnerabilities:  Design bugs (insufficient protection mechanisms)

It is the task of the hardware security engineer to conduct a threat analysis for the considered design.
The result of this analysis is a set of threat models that are relevant for the considered design and its
deployment domain, such as illustrated by the above examples. The derived threat models are the
basis for the verification engineer to define the verification targets. A set of properties to be verified
is used for each threat model. A key challenge for the verification methodology is that the engineer
must develop a full understanding about what threat models can be covered by specifying which
properties. This means the engineer must understand for which security targets the developed
properties provide guarantees, under what assumptions for the potential vulnerabilities and for which
profile of the attacker.

Modern property languages, such as SVA, provide a strong basis for formalizing the threat models
described above. Besides the language, however, the general verification methodology has a strong
influence on how property sets with appropriate coverage are specified. The state of the art in these
methodologies is subject to the following section.

3. State of the Art - Formal Hardware Verification Methods and Methodologies

3.1.New Era in Hardware Security

For better understanding the evolution of formal hardware verification in the field of
microarchitectural security, it is helpful to pay particular attention to recent developments in the field.

In the context of cybersecurity, formal methods have particularly strong roots in the software domain.
This has mainly two reasons: First, a large body of security violations in IT systems is based on software
deficits; and formal methods to mitigate these weaknesses have been under intensive research for
decades. Second, as elaborated in Sec. 2.1.2.1, many vulnerabilities that exploit hardware weaknesses,
such as cache-based side channels, could mostly be addressed by software defenses.



In other words, a software-driven view on microarchitectural hardware security dominated the field
for many years. However, this changed abruptly in January 2018 when headline news about the
discovery of new hardware attacks called Spectre and Meltdown startled the general public around
the globe. The industry reacted promptly and swift software updates were provided. However, they
offered only little relief. It was quickly understood that Spectre and Meltdown belonged to a new class
of ISA-invisible side channels, further explained in Sec. 2.1.2.2. A keynote statement of David Patterson
(IEEE/ACM Design Automation Conference, 2018), co-inventor of modern RISC computer architectures
and Turing Award winner 2017, underlines this insight: “State of computer security is embarrassing for
all of us in the computing field. It seems unlikely systems will ever become secure using software-only
solutions”.

It turns out that Spectre and Meltdown are only two examples of a larger class of new side channels
which were named “transient execution side channels (TES)” (cf. Sec. 2.1.2.2). AlImost on a monthly
basis, new types of attacks of this class were discovered and reported. The variety of such attacks
discovered in recent years ranges from MDS attacks (e.g., [3]) to Speculative Interference [4], with
many of them successfully attacking a previously patched system (e.g., Fallout attack [3]). The initial
hope for short-term and full solutions to defend against these new weaknesses were not fulfilled, as
admitted by Martin Dixon, VP for Security at Intel: “The potential for a transient execution to extract
data being carried across a branch or a load is still a new field of research. Even though transient
execution attacks are highly complex and difficult to carry out successfully outside of a lab, we expect
it to remain a persistent focus area for researchers and the computer industry.”

Today, re-establishing trust into the microarchitectures of computing systems has become one of the
main goals in the computer industry and among chip makers. Security verification and the
development of defense mechanisms at the hardware level have become rapidly growing research
fields and complement activities at the software level. There is general conviction that the formidable
patch-and-pray cycles can only be overcome if comprehensive security guarantees are already
provided during the design phase and when signing-off a chip before tape-out. Formal verification
bears promise to provide such guarantees. However, while it is encouraging that formal methods have
become mainstream in many industrial flows for hardware design, most of these techniques are
tailored towards general functional design aspects and suffer from severe limitations when targeting
microarchitectural security and side channels.

In the following, we first consider mainstream formal verification techniques, as they have been
developed for checking the functional correctness of a design (Sections 3.2, 3.3, 3.4). They provide the
basis for detecting security-critical design errors. Then, we describe the state of the art in techniques
specifically targeting security (Sections 3.5, 3.6). The role of the formal hardware verification at the
hardware/software interface is described in Sec. 3.7.

3.2. Formal Verification for Functional Correctness

This section summarizes basic concepts and the state of the art in common approaches to functional
verification with formal methods. We compare the different classes of techniques qualitatively in
terms of three important criteria for any formal method: scalability, degree of automation and
coverage.

3.2.1. Formal Verification without Property Specification - Automatic Linting

“Automatic formal verification” of hardware, i.e., formal verification without the need of specifying

verification targets by some property language, historically often served as the “appetizer” to formal

methods and guided industry into a more elaborate use of formal techniques. Commonly, this class of

methods, also referred to as “hardware linting”, is used to check RTL design rules that must be fulfilled

for any design, independently of its specific function. Hardware linting targets poor coding styles,
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mismatches of the simulation and synthesis semantics in the RTL code, coding errors in finite state
machine (FSM) implementations and similar issues. A particular focus often lies on detecting problems
related to the synchronization of clocks and clock domain crossings.

Automatic linting is a standard feature in many commercial tools and is typically employed as a
precursor to more advanced verification efforts, as described below. There is currently only little
research on formal hardware linting in academia. Notable exceptions exist which, however, address
advanced methods of formal verification that largely avoid the formalization of the design’s
functionality. Instead of simple design rules, sophisticated but still generic design properties are
investigated. Examples of such advanced linting methods are the work of [29], [30], [31] for checking
functional correctness in processor cores and of [32] for checking clock-domain crossings in very large
designs.

Scalability: Checking design rules often does not require a deep logical analysis of the design or even a
traversal of the system’s state space. This holds, for example, if only structural conditions regarding
design connectivity or coding rules are checked. Therefore, scalability of hardware linting
techniques is usually very high. Entire chips can be analyzed in a single run. For more advanced
approaches checking functional behavior in more depth, similar limitations apply as discussed
below for property checking. In fact, the advanced techniques of hardware linting are often based
on the property checking methods discussed below.

Degree of Automation: A high degree of automation is a clear differentiator of linting techniques
compared to other verification techniques. In most cases, the properties are checked fully
automatically.

Coverage: The beneficial characteristics of hardware linting with respect to scalability and automation
come at the price of relatively poor coverage. Design-specific properties cannot be checked. Hence,
this class of techniques never guarantees compliance of an implementation with a design-specific
specification.

The trade-off between these criteria is illustrated in Figure 2 by the mark for “Linting”.

Degree of
automation Linting

Coverage

Scalability

Figure 2: Qualities of methods of formal hardware verification
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3.2.2. Formal Property Checking

In property checking a design model is checked against a functional specification using formal and
automatic methods. The design model can be given at different levels of abstraction. In most industrial
settings of hardware design, it is mainstream to use RTL models, typically given as VHDL or Verilog
descriptions, as the basis for verification. Additionally, also descriptions at higher abstraction levels
based on languages like SystemC gain popularity in the verification flow. The choice of a model and a
level of abstraction have a large influence on what verification targets can be addressed. Models at a
high level of abstraction allow for handling large designs but miss relevant information, for example,
the clock-accurate timing of a microarchitectural implementation. Many security gaps, such as TESs,
can only be detected by an analysis that operates on a model which is both bit- and clock cycle
accurate. Therefore, the following discussion concentrates on formal verification at the RTL which is
also the standard for SoC sign-off. The challenge of using abstraction levels above RTL in security
verification is further discussed in Sec. 3.4.

The functional specification is often provided in an informal way using textual descriptions, flow charts,
timing diagrams and the like. The main manual effort in formal verification by property checking results
from the task to formalize this specification in terms of properties. Importantly, the properties must
be written in such a way that the possibly wrong thinking of a designer and related implementation
bugs are not imported into the property specification as well. This is accomplished by adopting a
property specification style that describes the functional behavior abstractly and without restrictions
regarding its implementation. Similar like the ISA specification of a processor denotes the behavior of
a processor instruction in terms of programmer-visible registers and without any consideration of how
this behavior is implemented (e.g. in-order pipeline or out-of-order pipeline), the property
specification for hardware should only describe what functional behavior is expected but not how it is
implemented. SystemVerilog Assertions (SVA) is currently the most popular language for specifying
properties at the RTL.

The way how properties are formulated to specify the relevant verification targets is critical for the
quality of the overall verification results. The question arises what properties shall be written and to
what extent the functional behavior of a design is covered by a given property set. Different coverage
metrics are available to answer these questions. Often, coverage in formal verification adopts concepts
from simulation-based verification. Especially mutation analysis is commonly used. Faults are injected
into the design to systematically generate design “mutants” and it is checked what fraction of these
errors is discovered by the given property set [33], [34]. Other coverage metrics for formal methods
address the completeness of the specification [35], [36], [37]. In general, coverage is a main concern
in every verification flow and differentiates verification approaches from each other.

A formal property checker exhaustively evaluates a given property on the given model. This is the task
of the underlying proof method. The proof method should be as automatic as possible and in many
cases is indeed fully automated. The main criterion for the quality of the proof method is typically its
scalability on large designs.

Scalability, degree of automation and coverage are the main differentiators between different
approaches to property checking. The possible trade-offs between these three criteria have led to the
development of two main classes of formal proof methods pursuing the unbounded or the bounded
paradigm of property checking. The trade-offs associated with these paradigms are elaborated next.

3.2.2.1. The Unbounded Paradigm

The Unbounded Paradigm denotes the classical approach to formal verification by property checking.
Invented already in the 1980s, model checking [38], [39], [40], [41] lays the foundation for many of
today’s formal verification methods both for hardware and for software. Both hardware and software
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can be represented in a uniform way by well-defined sequential models. In model checking a
sequential model’s compliance with a temporal logic expression, the “property”, is evaluated by formal
and fully automatic methods. Model checking reasons on sequential models with a finite number of
internal states and considers behaviors over infinite times. This allows for proving strong guarantees
on a design. Modern algorithms for model checking often rely on data structures based on Binary
Decision Diagrams (BDDs) [42]. BDDs are graph representation of Boolean functions and provide a
powerful instrument to represent the large state space of a sequential model in a compact and
manageable way.

Scalability:
Scalability is the main limitation of the unbounded paradigm. Model checking for today’s hardware

designs requires the traversal of huge state spaces. Substantial progress in model checking based on
advanced state space representations and automatic abstraction techniques make it possible to deal
with state spaces of 2Mndeds states, Although this is an astronomic number, it means that systems with
up to a few hundreds of state variables can be handled. Note, however, that hardware modules of
today’s SoCs typically have hundreds of thousands of state variables. This limits the use of the
unbounded paradigm to proving only local assertions in a design. In the context of security verification,
the unbounded paradigm may be applied only to small SoC security elements. Therefore, in practice,
the unbounded paradigm is often complemented with a methodology based on the bounded
paradigm, described below.

Degree of Automation:
Conventional model checking techniques are fully automated. The only manual effort arises from the
need of formulating the property. This effort depends largely on the considered verification tasks.

Coverage:
Itis an advantage of unbounded model checking that the formulated properties can cover the specified

behavior at all times during the existence of the system. This makes a strong contribution to coverage.
However, coverage also depends on what properties have been formulated and how a set of several
properties contributes to composing a proof with global guarantees [43]. This is a question of advanced
methodologies whose adoption in practice has been hampered by the limited scalability of unbounded
model checking. Therefore, in commercial practice, unbounded model checking is mostly used in the
context of Assertion Based Verification (ABV) where designers sprinkle assertions into their code to
build confidence into the design. Although commercial vendors support this process by certain (often
proprietary) coverage-driven flows, the resulting coverage is often considered insufficient or remains
unclear. In such a setting the bulk of the verification effort is therefore left to simulation.

The trade-off between these criteria is illustrated in Figure 2 by the mark for model checking “MC”.

3.2.2.2. The Bounded Paradigm

3.2.2.2.1. Bounded Model Checking

Bounded Model Checking (BMC) [44] laid the foundation to the bounded paradigm in property
checking. As the name suggests, in BMC the property checking problem is restricted to a finite bounded
time interval. To this end, the temporal property is formulated for a finite time window starting from
a known state of the system, often the reset state. This formulation has the great advantage that the
reasoning on sequential systems can be mapped to the Boolean Satisfiability problem (SAT).

SAT is the problem to decide for a given Boolean function whether or not there exists a valuation to its
variables such that the function assume the value ‘1’, i.e., it is “satisfied”. BMC leverages the fact that
tools to solve the SAT problem, so called “SAT-solvers”, have been a very active research field during
the last two decades and very powerful solvers are available today, both in industry and in public
domain.
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In BMC the design and the property are converted into a Boolean function such that any valuation to
its variables satisfying the function is a counterexample to the property. If the function is proven to be
unsatisfiable, i.e., no counterexamples exist, the property is verified to hold for the given time interval
and start state.

Scalability:

The scalability of BMC compares favorably with most other approaches in formal verification.
Hardware designs with tens or even hundreds of thousands of inputs, outputs and internal state
variables can often be handled within short proof times. Besides the size of the design also the nature
of the property has an influence on the scalability of solvers. This is addressed by appropriate
methodologies how properties are formulated. Different commercial providers support different
flavors of such methodologies and provide guidance to the verification engineers to make best possible
use of the available tools.

Degree of Automation:

The BMC proof techniques are fully automated. The only manual effort arising in BMC-based
verification comes from the need to formulate properties. This effort depends largely on the
considered verification tasks and is similar to most other property checking techniques.

Coverage:

Coverage is the main limitation of BMC. The functional behavior is analyzed only for a finite number of
clock cycles starting from a well-defined state. Hence, there is no global proof of the property, only a
“bounded proof” which guarantees correct behavior in a certain time window. On the other hand,
BMC can be a very efficient tool to quickly detect counterexamples to a property. Therefore, in
industrial practice, BMC quite often serves as a “bug hunting” method.

The trade-off between these criteria is illustrated in Figure 2 by the mark for model checking “BMC”.

3.2.2.2.2. Advanced Methods of the Bounded Paradigm.

The limitation of BMC with respect to providing generally valid, “unbounded” proofs often motivates
the use of more advanced methods under the bounded paradigm, such as Symbolic Trajectory
Evaluation (STE) [45], Interval Property Checking (IPC) [46] and k-Step Induction [47]. All of them have
in common with BMC that they consider behaviors within bounded time windows. However, they
achieve unbounded proofs by additional concepts. K-step induction combines the local proofs over
finite times with inductive reasoning. IPC and STE avoid induction but obtain unbounded proofs for
properties formulated over bounded time windows by considering any state at the start of the time
window. For example, this allows to prove that a processor instruction (executed over finite time) is
correctly implemented at the RTL and complies with its ISA specification. IPC and STE have their roots
in industrial developments. IPC was developed already in the 1990s within Siemens, the STE
development has been driven mostly within Intel.

For the advanced methods of the bounded paradigm and IPC in particular, comprehensive case studies
were conducted by German industry to assess the productivity and quality of the design and
verification flow. This was compared with state-of-the-art simulation-based approaches. Some of
these case studies were conducted by BMBF consortia [48], [49]. The gained insights can be
summarized as follows:

Scalability:

Scalability turned out to be less of a problem than originally expected by industrial users. Similar as in
BMC the advanced methods of the bounded paradigm map reasoning on sequential systems to
combinational problems. Therefore, the scalability of their proof engines is similarly high as for BMC.
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With few exceptions, the common verification targets of SoC modules can be proven without
substantial problems. For example, large parts of the Infineon Tricore processor, a high-end processor
for automotive applications were exhaustively verified by IPC [50]. Almost all properties of this design
(with more than 130k lines of Verilog code) were proven, each within few minutes. This is even
considered an advantage over simulation-based methods that often run for weeks on clusters of
compute servers. Since then, in industrial design and verification projects conducted over the years,
such results were confirmed on numerous other SoC modules of different nature, ranging from
telecom and automotive to loT applications.

Degree of Automation:

As in all other property checking methods manual effort is required to create the properties to be
verified. In this aspect the advanced methods of the bounded paradigm differ only little from other
methods of property checking. Due to the popularity of these approaches, however, investments have
been made, especially in industry, to automatically generate the required properties from higher level
models, such as within Infineon [51]. This reduces manual effort substantially. (It should be noted that
this progress is not intrinsic to the nature of these proof methods itself. In principle, property
generation can be combined also with any other approach to property checking.)

Compared to standard BMC, the advanced methods of the bounded paradigm, however, suffer from
an additional source of manual effort. This effort is related to generalizing the bounded proof to infinite
time. In IPC, for example, considering any state at the beginning of the time window is the root cause
of false alarms. Counterexamples suggest a failing property but are based on starting states of the
considered time window that are impossible in the design. The problem can be solved by excluding
such “unreachable” states from consideration. This requires refining the starting state of the model
by so called “invariants”. Identifying these invariants requires additional procedures and accounts for
additional manual effort when employing this paradigm.

The productivity of a formal verification engineer covering a design’s entire functional behavior using
IPC or related methods amounts to approximately 2000 lines of RTL code per person month, as
measured in a number of industrial case studies [48], [49]. For specific modules, such as processor
cores, this productivity can be substantially higher when properties are generated automatically [31].

Coverage:

Coverage is the strong side of the advanced methods in the bounded paradigm. This does not only
result from the fact that the proofs obtained are unbounded. Additionally, systematic methodologies
exist, especially for IPC, to derive sets of properties from the informal specification such that well-
defined coverage metrics are met. The most advanced approaches [36], [37], [31] ensure with formal
rigor that the developed property set uniquely determines the entire design behavior. In other words,
two hardware designs fulfilling the same such property set are necessarily equivalent. Industrial case
studies [48], [49] and today’s industrial experience confirm that a substantial number of design bugs
can be identified by formal techniques which were missed previously by simulation.

In spite of the encouraging successes described above, formal verification remains a challenge in
industrial practice. One of the main reasons is the effort for property specification. Although in terms
of quantitative numbers this effort may not exceed the effort needed for simulation-based
approaches, such as for developing testbenches, the different nature of formal techniques and
simulation is quite essential. Simulation is mostly a black-box approach. The verification engineer must
understand the specification but needs no knowledge about the internal architecture of a design. This
has big advantages, for example, when outsourcing verification to external service providers. Formal
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verification, by contrast, is a white-box technique; the verification engineer must understand internal
design structures to formulate properties. This special expertise is not always available.

A common response to this problem consists in bringing verification closer to design, such as in
commercially available Assertion-Based Verification (ABV) where the designers themselves insert
assertions into the design. This is often considered a valuable addition to the design flow but does not
fully replace the conventional simulation phase.

More recently, however, as safety- and security-critical applications are becoming more common in
embedded computing, we can observe a renewed trend towards formal methods. More and more
often, the extra costs for formal approaches are considered justified in view of the risks that otherwise
are taken. According to the Wilson industrial survey [52] more than 40% of industrial chip design
projects currently adopt formal methodologies.

Today, the state of the art in property checking for hardware is defined by commercial vendors such
as Synopsys, Siemens EDA and Cadence. In contrast to the software domain, open source tools for
hardware verification are rare. Partly, this can be explained by the complexity of design descriptions
using hardware description languages. They support a wealth of features which impose high hurdles
on creating a front-end technology for any tool. Developing a front end for state-of-the-art property
checking demands a great and continuous development effort, while being rather unrewarding from
a scientific point of view. Open source contributions are therefore mostly restricted to the backend
solvers based on Satisfiability Solving (SAT) and Binary Decision Diagrams (BDDs). Notable exceptions
are E-BMC (latest release in 2017) [53] and SymbiYosys [54]. These open-source tools provide multiple
proof engines in their backend but support only a subset of SystemVerilog and SVA in the frontend.
Important “quality-of-life features” like black-boxing are missing. SymbiYosys allows for extended
functionality only for its commercial upgrade. The functionality supported in public domain does not
allow for obtaining competitive results on realistic SoC designs. The limitations may partly result from
a “chicken-egg” problem. Most academic research groups in hardware verification currently make use
of the free (or low-cost) licenses for commercial tools which are superior to currently available open-
source solutions. On the other hand, the quality of open-source tools might increase if there was a
stronger demand from the research community.

3.3. Theorem Proving

Automated theorem proving is a subfield of mathematical logic concerning the automation of
mathematical proofs. All of the techniques discussed for the formal verification of digital systems can
therefore be considered automated theorem proving. However, it is useful to distinguish methods
based on general purpose theorem provers—which are computer programs capable of assisting a
variety of traditional deductive mathematical proofs — from the more specialized property checking
techniques for hardware, as described above.

A number of theorem provers are available, differing in their emphasized problem domains and input
languages. Most of them are freely available academic developments, e.g., HOL [55], Coq [56], and
Isabelle [57]. Complex mathematical theorems have successfully been formalized and proven using
theorem provers, including a few previously open problems, e.g., Kepler’s conjecture and the four
color theorem [58].

A theorem prover requires a formalization of the problem under consideration in the syntax of the
tool’s language. The computation of the proof is automated as part of an interactive process where
axioms and reasoning techniques are specified. Verifying digital hardware based on a general-purpose
theorem prover is actually a demanding process. It requires knowledge on proofs of classical
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mathematical theorems and, even more critically, expertise to correctly formalize the design and
verification target in a representation accepted by the tool.

Yet, industrial activities in theorem proving are alive. After the infamous Pentium FDIV bug [59]
especially floating-point units have been granted the attention of such rigid formal methods. Larger
chip makers and companies with particularly high requirements on hardware quality support in-house
expert teams on theorem proving to support the high end of their verification flows.

Scalability: The scalability of theorem provers can be considered high. They can leverage essentially
the full state of the art of proving methods that match the given model and verification target. In
addition, theorem proving benefits from the possibility to build a sound stack of models. This is further
discussed in Sec. 3.4. Theorem proving allows for abstractions such that verification results obtained
at higher levels, thus scalable to large systems, also hold without further proof on refined
implementations of these models at lower levels. This is a major strength of theorem proving resulting
from the general use of mathematical logic.

Degree of Automation: High manual effort requiring advanced expertise is unfortunately the severe
limitation of theorem proving. While golden models of hardware designs are described at the RTL in
languages like VHDL or Verilog, theorem provers demand modeling the system and its properties in
first order or higher order logic. This is considered disruptive in standard industrial design flows and
requires a team of experts.

An industry setting generally requires more automation and support for the standardized description
languages than what is offered by general-purpose theorem provers. Theorem provers used in industry
today are therefore either tailored to specific niches, such as floating-point units, or they make use of
the more automated model checking methods described above. In the latter case, the limitations
associated with these more automated techniques apply, as described above.

Coverage: Coverage, in principle, is the great strength of theorem proving. If the entire system is
represented by mathematical logic, global verification targets can be fully covered. More than any
other method, theorem proving can create connections between different abstraction layers and
between hardware and software such that well-defined formal relationships exist between the
different levels. This was demonstrated, for example, in the national BMBF projects Verisoft and
Verisoft-XT [49]. In the hardware domain, however, the great challenge remains to connect these
mathematical models with the concrete descriptions of microarchitectural implementations, in
particular the RTL descriptions of the golden models for sign-off. This connection is hard to realize and,
if not properly addressed, creates a verification gap because only mathematical models and not the
concrete implementations are verified. There is the vision to generate the RTL descriptions for the
implementation correct-by-construction from the logic models. However, this faces limited acceptance
in the hardware community since design experts wish to leverage their human expertise for design
refinements and architectural optimizations. This process relies on standardized hardware description
languages such as Verilog and SystemVerilog which are tailored towards this purpose.

3.4. The Role of Abstraction in Formal Hardware Verification

Reasoning in complex digital systems is done through a hierarchy of model descriptions at different
levels of abstraction, ranging from transistor-level descriptions through gate-level and RTL to
electronic system level (ESL) descriptions. In programmable systems the ISA level serves as the
interface between hardware and software. Also the software can be considered at different levels
ranging from a hardware-dependent assembler level to hardware-independent descriptions based on
high-level programming languages.
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Choosing the right level of abstraction for a given verification task is of key importance. Low-level
descriptions allow for the verification of local but detailed implementation properties while high-level
descriptions facilitate the global analysis of a system’s behavior.

Electronic System Level (ESL)

1
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Register Transfer Level (RTL)

Gate Level
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Figure 3: Hardware abstraction levels — bottom up reasoning in verification
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For hardware the relationships between abstraction layers are summarized in Figure 3. In verification
the reasoning is traditionally bottom-up. A new abstraction level can be used for design and
verification only when it stands in a well-defined relationship with the lower abstraction levels.
Otherwise, the semantics of the abstract model cannot be understood in terms of the ,real” circuit to
be implemented. Therefore, the verification at each level must build confidence in the model of the
next higher level. For example, starting at the transistor level, verification, such as by analog simulation
techniques, is used to achieve confidence in the correct behavior of a logic gate, such as a NAND gate.
This trust in the NAND gate is not only important at the transistor level. It allows us to move to the
next higher level, the gate level and to analyze the behavior of a large gate netlist only in terms of its
abstract logic behavior. By merit of trust in the correct transistor-level implementation of the NAND
gate, the results of the logic simulation extend also to the transistor-level implementation without
further proof. We say that the gate netlist description is a ,sound abstraction” of the transistor-level
implementation. Similarly, by merit of formal equivalence checking, the gate netlist is set into a well-
defined formal relationship with the RTL models of a design. This makes also RTL a sound abstraction
of the physical circuit implementation and justifies the role of RTL descriptions as the golden model in
today’s design and verification flows.

Unfortunately, the ,chain of trust” breaks when considering even higher levels. Descriptions at the
electronic system level (ESL) normally lack a well-defined relationship with RTL. While ESL models are
of great value for early design exploration and for parallelizing hardware and software development,
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ESL abstractions are not formally sound with respect to RTL. Verification results obtained at the ESL
level do not necessarily hold for the RTL design models. This ,,semantic gap” is one of the main hurdles
in today’s flows when attempting to lift design and verification to higher levels than RTL. Even at the
presence of high-level synthesis, RTL typically remains the point of reference for sign-off verification.
Higher-level models, on the other hand, only serve as early “prototypes” of the system.

As pointed out in Sec. 3.3, theorem proving and mathematical logic, in principle, can provide a
complete and sound stack of models for both hardware and software descriptions. In fact, theorem
proving also has the potential to close the semantic gap between RTL and ESL models. Industrial
adoption of such an approach, however, is difficult since, as explained in Sec. 3.3, theorem proving is
not easily compatible with today’s design flows that are based on other languages, modeling
techniques and tools.

In order to overcome this limitation, approaches based on path predicate abstraction [60] and
instruction-level abstraction [61] have been developed to close the semantic gap between ESL models
and RTL exclusively with commonly accepted and standardized design and verification languages.
While such approaches successfully connect transaction-level behavioral models with RTL, they do not
cover all common abstraction features of high-level models. Therefore, in summary, leveraging the
advantages of high-level hardware models for a better scalability of formal verification of concrete
design implementations remains one of the main challenges in today’s flows.

3.5. Formal Security Verification by Targeting Non-Functional Properties

Most commonly, security verification for hardware has become part of the verification of functional
correctness. This means that the characteristics of conventional verification flows for functional
correctness, as described in previous sections, apply also to verifying security features.
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Figure 4: Functional vs. Non-functional verification flow for security
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Besides detecting security-critical design bugs (cf. 2.1.1) functional verification techniques can equally
detect trojans that are visible at the RTL. Especially techniques using advanced coverage metrics
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(cf. 3.2.2.2.2) prove adequate to detect not only any violation of the functional specification but also
any additional (undocumented) and possibly malicious functionality that may be triggered only under
special circumstances. This holds also for infrastructures used in debugging and test. In special cases,
however, tailor-made methods for security analysis, for example for reconfigurable scan networks
[62], can be advisable.

In general, if the RTL description is available for analysis, the risk of RTL trojans, as opposed to trojans
introduced after sign-off (cf. Lot 4), is usually managed in the same way as the risk of security-critical
design bugs. State-of-the-art property checking can be used to verify the design’s functionality
together with its security features. If the RTL description is not provided, this is a greater challenge. It
needs to be addressed in the verification flow by appropriate threat models, as described in Sec. 2.3,
taking into account the possibly malicious role of third-party IPs.

The conventional flow for security verification based on functional property checking is shown in the
left part of Figure 4. The targeted security features (Box Il) typically result from a high-level,
architectural perspective. The design specification is extended by an additional functional specification
(Box IIl) of these security features which guides their integration into the RTL implementation. This is
followed by functional verification procedures (Box IV) which are rooted in established methodologies,
as described in Sec. 3.2, for checking an implementation against the functional specification.

It turns out, however, that this classic approach is not always sufficient. Not only does conventional
functional verification miss side channels, also the abstract security requirements can be extremely
difficult to map to functional specifications, requiring a detailed, microarchitectural understanding of
security threats. Therefore, the specification (Box Il) itself may miss to cover relevant aspects of the
global threat model. Experience shows that, even when choosing security features conservatively, the
conventional design process can miss subtle, yet hazardous security gaps and gives rise to the widely
spread complaint about a never-ending “patch-and-pray” cycle.

Therefore, another approach to formal hardware security verification has moved into the focus of
research which targets security properties directly. This flow is shown on the right side of Figure 4.
Instead of developing a detailed (and error-prone) functional specification, this approach starts from
the applicable threat model (Box |) and formalizes security requirements rather than detailed
functional behaviors (cf. Sec. 2.3). This leads to specifying non-functional security properties (Box VI)
which are orthogonal to conventional functional specifications. Since these properties directly target
global security requirements without the need of a functional specification for the intended defense
mechanisms, these methods have the potential to cover security breaches which are easily missed by
the conventional approach. Both conventional solvers for functional verification (cf. Sec. 3.2) as well
as specialized solvers, such as [63], can serve as a basis to extend formal hardware verification for such
non-functional targets (Box VII).

This relatively new category of formal security verification methods often adopts the view of
“information flow tracking” or “taint analysis” which have been popular in the software domain
already for a long time. The adoption of taint analysis in the hardware domain was proposed in [64],
extending over previous work [65] and the work of [66]. In this paradigm, hazardous information flows
are identified between different components of the hardware system and formalized in terms of
“information flow properties” or “non-interference properties”. This relates to the notion of
“hyperproperties” in SW security verification [67]. Formal hardware verification methods based on the
same or similar solvers as in Sec. 3.2 are then used to check these properties.

Commercial EDA companies support this non-functional paradigm by providing tools for formal path
analysis. These tools check whether or not an illegal information flow can happen through a certain
suspicious path between two points in the design. This can be effective in checking selected paths of a
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design for information leakages, but faces limitations with so far unknown security weaknesses or
unexpected information flows. In order to select a suspicious path, the user must rely on a priori
knowledge about potential vulnerabilities. Moreover, experience shows that these methods often
suffer from scalability issues when considering global information flows in complex designs, limiting
their applicability in practice.

A different approach is taken by a recently proposed method, called Unique Program Execution
Checking (UPEC) [68], [69], [70]. UPEC does not decompose the problem in terms of structural paths,
but “semantically” in terms of possible propagation scenarios for confidential information. This makes
UPEC exhaustive with respect to the formalized threat models and has the advantage that no a priori
knowledge on possible attacks is required. Technically, UPEC can be understood as a light-weight form
of sequential equivalence checking and therefore partly inherits the high scalability of established
methods for equivalence checking. UPEC uses IPC as its underlying proof engine. Therefore, similar as
for IPC, also UPEC may cause false alarms which have to be removed by the use of invariants. This
inhibits the full automation of the UPEC approach.

Other approaches [71], [72], [73], [74] have targeted verifying hardware security by non-functional
properties specified at abstract levels above the RTL. InSpectre [72] provided a framework for formal
reasoning about different security countermeasures, using a formal microarchitectural model with
speculative and out-of-order execution semantics. Also UCLID [73] can be used to verify the security
of different microarchitectural design schemes. CheckMate [74] is a program-synthesis based
technique to synthesize attacks based on certain execution patterns and abstract microarchitecture
models. The synthesized attacks can be used to test the security of the system. This class of techniques
provides important insight into the design flow by an early capturing of security problems and
consequently delivering RTL designs with higher quality leading to lower RTL verification efforts.
However, these techniques operate on abstractions that lack formal soundness with respect to RTL, as
discussed in Sec. 3.4. Therefore, they can miss security-critical details and cannot serve as tools for
sign-off verification.

3.6. Language-based HW security

Another line of research is language-based security. This paradigm supports hardware design with
formal guarantees for security properties and advocates the use of new security-driven hardware
description languages. These languages usually use a type system that forbids explicit (direct value
assignment) and/or implicit (conditional assignment) information flows between certain security types
(security labels), according to a security policy.

Caisson [75] and Sapper [76] are examples of hardware description languages for security. They enable
the user to design hardware with the desired information flow properties. In Caisson and Sapper, the
designer must annotate each register in the design with security types (labels). The code can be
checked with the designed type system for security violations. Caisson uses a static type system forcing
the designer to duplicate the logic for those information paths that violate the type system. Sapper
improved over Caisson by using dynamic types. This approach can be linked to theorem proving (cf.
Sec. 3.3). The VeriCog-IFT framework [77] automatically converts the design to the Coq formal
language [78] and generates a security property theorem based on an information flow policy.
Although this removes the need for using a new hardware description language, the designer still
needs to annotate the Coq code with security types.

All of the above languages employ a conservative information tracking scheme in their type system,
which creates an overestimate about the possible information flows. This bears the risk of overly
conservative and possibly inefficient designs.
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SecVerilog [79] extends the Verilog language with a security type system. The designer needs to label
storage elements with security types which allow for enforcing information flow properties. SecVerilog
implements precise information flow tracking by using predicate analysis and constraint solving. This
solves the overestimation problem of other languages. Similar to SecVerilog, ChiselFlow [80] is
proposed to extend the Chisel language [81] with a security type system. ChiselFlow partially
automates the labeling process to mitigate the incurred manual effort. Although the use of Verilog and
Chisel as the base language eases the adoption of the method, the labeling process is complicated and
security violations are hard to debug in these approaches. Furthermore, the designer may need to
adapt the labels in the design in order to verify different security properties. A considerable effort also
results from the need of a system-wide labeling of the RTL design. Such changes of design
methodologies in established design teams are usually hard to implement.

HyperFlow [80] is an example of an SoC completely designed (and formally verified by construction)
using a special, security-driven hardware description language. The non-interference property
implemented by HyperFlow is a strong security measure that can block many attack scenarios in a
computing system, including both classical side-channel attacks (cf. Sec. 2.1.2.1) and attacks based on
transient execution side channels (cf. Sec.2.1.2.2). However, this security guarantee comes at a high
price in performance and memory overhead, and imposes drastic changes in the overall design flow,
from hardware design to operating system development.

3.7. Formal Verification at the Hardware/Software Interface

At the hardware/software interface strategies largely depend on the considered vulnerabilities. We
can distinguish three cases:

Security-critical design bugs (cf. Sec. 2.1.1): Generally, it is not desirable that software developers have
to take any hardware issues into account that are related to implementation details. Therefore,
security-critical design bugs associated with module bugs, such as a poor implementation of physical
memory protection, are typically addressed exclusively in the hardware. The situation becomes more
difficult, however, if security gaps are found which concern the interaction between different modules
and their integration into the system. Such gaps are often related to specific firmware configurations
and impose restrictions on software development. Hardware fixes that avoid any restrictions on the
software may be possible but can cause significant overhead in the system. Therefore, in practice,
trade-offs must be considered where restrictions in the software are balanced against the overhead of
special hardware mechanisms for security. For formal security verification at the hardware level,
software restrictions must be modelled adequately as assumptions for the hardware proofs.
Conversely, from counterexamples to the hardware security properties software assertions must be
formulated and proven at the software level. Such a flow has been demonstrated for example in [70].

Security violations by ISA-visible microarchitectural side channels (cf. Sec. 2.1.2.1): ISA visibility is the
key characteristic of many classical microarchitectural side channels. In most cases no special measures
are taken at the hardware level. Security is ensured by measures exclusively at the software level that
prohibit security-critical software components from leaving exploitable footprints. Many of these
techniques are subsumed under the notions of data-oblivious programming. This well-known
paradigm enforces that run time, resource usage and memory access patterns of a security-critical
program are independent of confidential data. Formal hardware verification plays only a minor role in
this context. However, it must provide the guarantee for the hardware that the security of a data-
oblivious program is not compromised by data-dependent timing of hardware operations [63], [82].

Security violations by transient execution side channels (TESs) (cf. Sec. 2.1.2.2): This is where the bulk
of recent research related to the hardware/software interface has been conducted. Several attempts
are made for formally defining TES attacks at the software level to enable effective software
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verification against Spectre attacks. The main goal of such verification techniques is to find the
exploitable “gadgets” in the software in order to apply proper hardening, e.g., by inserting
synchronization barriers such as fence instructions. Gadgets are exploitable instruction sequences
existing within the kernel software, triggered by the attacker and running in privileged mode within a
victim process.

The approach of [83] is among the first attempts to developing a mathematical model for
microarchitectural side channels and TES attacks from a software perspective. The model provides a
good basis for understanding the security implications of microarchitectural optimizations. However,
it does not cover all possible TES attacks and misses attack scenarios in which the secret is leaked
through the timing of the victim program rather than its final state (cf. the Spectre-STC attack in [69]).

As elaborated in Sec. 2.1.2, transient instructions are not observable by analyzing the software based
on the semantics provided by the ISA. As a result, new techniques are proposed to verify software
against speculative attacks. Most of these techniques extend the existing software verification
approaches by augmenting the ISA semantics with some abstract annotations of underlying hardware
features [84], [85], [86].

The requirement of security against speculative attacks can be formalized based on the notions of
secure speculation [87] and speculative non-interference [88]. The basic idea is to verify at the
software level whether there is any security violation (w.r.t. a defined security policy) that can only
occur if the program is executed using the speculative semantics. Therefore, these formulations are
effective for verification at the software level. However, secure speculation, speculative non-
interference, and other efforts, such as [89] and [90], for formalizing TES attacks do not provide a
generic method for detecting TES attacks in hardware since they do not take the microarchitecture
into account. Transferring software security concepts to hardware verification is not trivial, as shown
at the example of constant time execution by [63].

New hardware/software contracts have been developed in [91] as a framework to reason more
precisely about what information hardware leaks and what consequences this has for software
security requirements. This provides a framework to evaluate security at the software level, without
leaving a gap due to certain microarchitectural features. It has not been examined yet, however, how
the hardware side of the high-level contracts can be mapped to the hardware implementation by RTL
properties and whether these properties scale for state-of-the-art commercial property checking.

4. Research Needs and Recommendations

In the context of cybersecurity, the overall goal of next-generation design and verification flows for
hardware must be to re-establish hardware as a trustworthy foundation for all software executions of
the IT system. This is of particular importance for all hardware security features, such as cryptographic
functions, that constitute the hardware-implemented root-of-trust of a system and lay the foundation
for the chain of trust at the software levels.

In view of this global objective, the preceding analysis of commonly addressed hardware security
targets and the state of the art in formal hardware verification shows a rather patchy picture of
currently available solutions.

In the following, we sketch research areas for formal hardware verification at the microarchitectural
level which can contribute to reaching the above overall goal. We begin with a brief look at the
possibility of linking these research activities to open-source initiatives.
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4.1. Research Contributions to Open-Source Initiatives

Making research results available in public domain is highly desirable. However, as elaborated in
Sec. 3.2, open-source tools for formal hardware verification are hardly available and there are
significant hurdles for the research community to develop them. Fortunately, this is not a show stopper
for supporting open-source developments also in the field of formal security analysis of hardware. A
large part of the developments described in the following can be made available to the public. In fact,
the following research, to a large extent, can be considered in separation from commercial tools. The
new methods can be designed to rely on commercial tools only in their backends as generic verification
engines, i.e., the new methods can be agnostic to these standard tools. Consequently, a new tool for
formal security analysis can be made public, however, with the restriction that it is fully functional only
when combined with one of the commercial property checkers. This is not a severe limitation since
standard (commercial) property checkers are available today throughout industry and in academia.

The hardware platforms for the research directions to be described can largely be retrieved from
various open-source hardware initiatives. The evolution of the open-source ISA RISC-V [92] is certainly
a game changer for academic research. There is a vibrant community for RISC-V hardware
development which continuously releases new cores and platforms of varying complexity. They
provide an excellent basis for the hardware demonstrators needed to evaluate the research results in
formal hardware verification for security. Conversely, research results in formal security verification
can contribute to the hardware development by identifying security holes in existing designs,
proposing fixes or providing secure designs.

4.2.Research Challenge — Tools for Formal Security Analysis

Tools for formal security analysis at the microarchitectural level are currently rooted in formal methods
for functional correctness and for path analysis. Significant extensions to this state of the art are
needed to meet the requirements of future design flows for security-critical systems.

4.2.1. Formalization of Threat Models

Considering the vast variety of deployment domains for SoCs, there is an ever-expanding attack
surface. Hardware verification engineers need to consider a large diversity of threat models (cf.
Sec. 2.3) to cover different use case scenarios and each threat model may impose unique challenges
on the verification task.

This results in great research need to create re-usable formalizations of the different threat models,
ranging from confidentiality violations by transient execution side channel attacks to integrity
violations by physical fault injection or third-party IP integration (cf. Sec. 2). The relevant threat models
depend on the type of hardware modules (in-order core, out-of-order core, accelerator, etc.) and their
integration into a larger design (System-on-Chip, Network-on-Chip (NoC), Multi-Core, etc.). A unified
approach is desirable which covers all relevant threat models based on standardized languages, such
as SVA, to integrate different verification targets into today’s verification plans without disruption. The
resulting verification IPs should be of generic value and can be made available in public domain.

Importantly, the formalization of threat models must be done as globally as possible. Rather than
targeting specific and known attack situations, global verification targets must be formulated that
cover a wide spectrum of vulnerabilities and attacker profiles. This increases the chance to cover also
the “unknown unknowns”, i.e., so far unknown vulnerabilities that potentially exist in the design.
Exploiting a priori knowledge on existing attacks must be avoided as much as possible in the
formalization of threat models.

Figure 5 provides an estimate for the failure risk and time horizon of this research. The arrows denote
dependencies in the research flow. Although the threat models may vary greatly for different
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processor architectures, the risk and time horizon of this research hardly depend on the type of
processor. This is because threat models are formalized globally and must abstract from the specific
implementation, such as the type of processor pipeline. However, research efforts and research risk
for formalizing threat models depend largely on the size and architecture of the SoC which is composed
from different cores and other modules. Formalizing the threats in such composed systems is widely a
new field of research.

We consider confidentiality a prerequisite for integrity. If confidentiality is violated, for example, a key
can be stolen and used by an attacker to violate the integrity of the system. Therefore, in Figure 5 we
only distinguish the two cases that confidentiality or both, confidentiality and integrity, are covered by
the threat model to be formalized.
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Figure 5: Risk and time horizon for research on formalization of threat models

4.2.2. Functional Verification for Avoiding Security-Critical Bug Escapes

Late detection of hardware security flaws can incur tremendous costs. Patching a design is either very
expensive, in terms of sacrificing performance and limiting functionality of the design, or simply
impossible for technical reasons. This calls for new functional verification techniques targeting
hardware security. Rather than being exhaustive with respect to a complete functional design
specification, the new tools must be exhaustive with respect to a well-defined threat model (cf. Sec. 3.2
and Sec. 3.5) and deliver well-defined security guarantees. The new tools must be scalable and, at the
same time, amenable to adoption by current industrial hardware design flows.

While state-of-the-art functional verification of a design, in principle, also avoids security-critical bug
escapes, the manual effort for such an exercise is prohibitively large, especially if not only a single core
but an entire SoC with multiple peripherals or a multi-core architecture is considered (cf.
Sec. 3.2.2.2.2). The new methods to be researched may draw advantages from prioritizing security
objectives over other aspects of functional correctness so that the formal analysis can be tailored
towards security with the benefit of reducing manual effort and increasing scalability. Note that
targeting non-functional properties may still detect functional design bugs. In particular, the methods
directly targeting the (non-functional) objective of security (integrity, confidentiality), as shown on the
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right side of Figure 4, have the potential to detect all functional design bugs that violate the security
target.

Figure 6 provides an estimate for the risk and time horizon of this research and depicts research
dependencies. Confidentiality in single cores is already fairly well understood. Formalizing the
verification target can build upon a large body of previous research (cf. Sec. 2). A formal proof of
functional confidentiality is currently doable for in-order cores of medium complexity. Even for such
simple cores, however, additional research is still advisable and can concentrate on better trade-offs
between scalability and the degree of automation (under exhaustive coverage of the proof target). For
out-of-order cores, by contrast, proving the absence of confidentiality-violating bugs is very difficult.
In spite of substantial efforts in the past, the authors are not aware of any successful attempt to fully
verify an (industry-scale) out-of-order processor against its functional specification. Therefore, proving
the functional correctness with respect to confidentiality, even if this is a simpler problem, bears
significant research risks and demands a long-term research effort.

Besides targeting cores there is research needed pursuing the target of confidentiality and integrity in
SoCs consisting of multiple components. Depending on the type and complexity of these components
the challenge for research varies. Considering integrity on top of confidentiality increases the
challenges. The associated dependencies, risks and time horizon are sketched in Figure 6.
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Figure 6: Risk and time horizon for research on functional security verification

4.2.3. Non-Functional Verification for Detecting Timing Side Channels

In addition to the functional or explicit information leakages that violate the security requirements,
also implicit information flows through timing side channels must be considered (cf. Sec. 2.1.2). This
complicates the verification process significantly because the functional specification, which is
untimed, cannot cover such requirement. Therefore, there is a lack of proper specification techniques
for security against timing side channels (cf. Sec. 4.2.1). Most commercial formal verification tools were
designed to verify functional properties and are not suitable for checking such non-functional
requirements.
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New formal tools are needed which target the threats by timing side channels in a systematic way. This
research can build upon initial successes in academia to detect transient execution side channels but
must extend the scope to all other side channels relevant at the microarchitectural level. This research
can take different facets depending on the type of the hardware system under verification:

Single Processor Cores: The bulk of previous research on microarchitectural side channels has
addressed single cores. This is justified by the fact that the single programmable hardware
components are the main source for side channels at the microarchitectural level. The type of
core plays a role for the class of side channels that must be considered. While high-end out-of-
order cores are infamous for their vulnerability to transient execution side channels, other types
of side channels are linked to cache-based systems and depend to a lesser degree on the
complexity of the core itself (cf. Sec. 2.1.2). Therefore, research is needed to systematically
address all timing side channels and to create methods capable of handling different architectures
ranging from simple in-order processors without speculation to out-of-order processors with
speculation.

SoCs and Multi-Core Systems: Only little research has been reported on detecting side channels
beyond single cores. To this day, it is poorly understood whether the nature of side channels and
the methods for their detection substantially differ when moving from single cores to systems
with multiple modules and processors. For transient execution side channels, the common
conjecture is that vulnerabilities can be identified by exclusively analyzing cores individually. Such
an approach, however, has never been formally certified and can be insufficient, especially, for
other types of side channels. Research is needed to better understand the role of timing side
channelsin large systems composed from numerous modules. This new understanding must spark
research on new methods for detecting cross-modular vulnerabilities (cf. Sec. 4.3.1).

For a given hardware design and its deployment domain, the relevance of side channels is often a
controversial issue. While formal methods detect such vulnerabilities, they are not adequate to assess
their relevance. Research is needed, on how to combine formal methodologies with a risk assessment,
for example, based on a quantitative assessment of side channel occurrence.
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Figure 7 provides an estimate for the risk and time horizon for research on non-functional security
verification. Note that no distinction between confidentiality and integrity is needed since timing side
channels are only a topic for confidentiality. Furthermore, TESs are a topic for cores only. Therefore,
TESs in single-core SoCs demand the same analysis as the single core itself. For other timing side
channels, this is an open question. The research efforts and risks therefore grow, especially if the scope
of the analysis is extended to all timing side channels and to SoCs with increasingly complex
architectures.

4.2.4. Cost Estimate for Research

We sketch research work packages which are motivated by the research goals formulated above. The
work packages have three components each relating to one of the three research directions shown in
Figure 5 to Figure 7. We also distinguish between systems of medium and high complexity. Research
efforts are denoted in terms of person years (PY). The given numbers are preliminary estimates. Actual
research costs may deviate from these figures depending on the employed methods and
demonstrators and depending on synergies within a collaborative research consortium. We further
annotate each work package with an estimate for the Technology Readiness Level that can be achieved
by the described research.

Work Package 1: Confidentiality in Cores
In-order cores (RISC-V examples: Ibex, RocketChip, Ariane):

e Formalization of threat models (1 PY): For single cores, research can build upon academic
results covering functional bugs and transient execution side channels. Research is still needed
to cover other microarchitectural side channels and microarchitectural footprints.

e Functional Verification (1 PY): There is a strong academic and commercial basis for functional
confidentiality verification. However, improvements are to be explored to reduce manual
effort (e.g., by flow on right side of Figure 4: Functional vs. Non-functional verification flow for
security).

e Non-Functional Verification (3 PY): Commercial state of the art is very limited. Academic results
are available for transient execution side channels. The main challenge is to extend the scope
of formal analysis to other microarchitectural side channels.

Total: 5 PY
Technology Readiness Level: 4

Additional research on Out-of-order cores (RISC-V example BOOM):

e Formalization of threat models: Formalization of threat models is largely unaffected by the
type of core. No extra effort.

e Functional Verification: Gap-free functional verification of out-of-order cores is an unsolved
problem, even if only security targets are considered. Since no activities or new ideas in this
area are currently visible in the worldwide research community, no cost estimate is given.

e Non-Functional Verification (2 PY): Commercial state of the art is very limited. Some academic
results are reported for TES attacks. Lifting them to higher maturity justifies 2 PYs of effort.
Extending the analysis to other side channels is an important research target justifying further
research effort.

Total: 2 PY
Technology Readiness Level: 4
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Work Package 2: Confidentiality in SoCs

SoCs of medium complexity, including multiple modules of different types
(RISC-V examples: OpenTitan, Pulpissimo)

e Formalization of Threat Models (2 PY): Formalization of SoC-wide confidentiality matching the
needs of formal technology still needs investigation. This is especially true if all
microarchitectural side channels shall be covered and if multi-core systems are considered.

e Functional Verification (2 PY): Commercial state-of-the art requires too much effort for gap-
free SoC-wide confidentiality verification. New approaches, for example, based on the right
part of Figure 4, must be explored.

e Non-Functional Verification (2 PY): The main challenge here is to understand and cover all
microarchitectural timing side channels relevant in an SoC. Previous research using formal
verification for this purpose is very sparse.

Total: 6 PY
Technology Readiness Level: 4

SoCs of high complexity, including out-of-order multi-core, Network on-Chip (NoC)
(RISC-V examples: none)

e Confidentiality of high-end SoCs should be researched in conjunction with integrity because of
similar complexity challenges for the formal methods. No extra cost estimate for
confidentiality is provided.

Work Package 3: Integrity in SoCs

SoCs of medium complexity, including multiple modules of different types
(RISC-V examples: OpenTitan, Pulpissimo)

e Formalization of Threat Models (2 PY): Almost no research is available. Exploring possible
attacker profiles and attack scenarios in multi-module SoCs is demanding since case studies on
multi-module designs are needed.

e Functional Verification (2 PY): The state of the art for integrity verification is insufficient but
can be developed by extending methods originally built for confidentiality.

e Non-Functional Verification: Side channels are only a topic for confidentiality.

Total: 4 PYs
Technology Readiness Level: 4

Additional research on SoC of high complexity, including out-of-order multi-core, NoC
(RISC-V examples: none)

e Formalization of threat models: Formalization of threat models is largely unaffected by the
type of core so that high-end designs do not require extra research effort.

e Functional Verification (2PY): No research on formal integrity verification (RTL) for high-end
SoCs has been reported yet. First concepts can be developed by extending the notions for SoCs
of medium complexity in combination with abstraction.

e Non-Functional Verification (2PY): Extending confidentiality as a pre-condition for integrity in
high-end SoCs is relevant and justifies research effort for developing first concepts.

Total: 4 PYs
Technology Readiness Level: 2
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For high-end SoCs the availability of demonstrator designs is very limited. Therefore, extra effort
for building demonstrators may be required.

4.3. Research Challenge — Flow and Methodology

Running a single tool on a specific design or design component can never lead to global security
guarantees formulated for a large hardware system and its interface with software. Instead, such
guarantees must result from a security-driven flow that combines the results of different methods and
tools across components and design layers. Such extensions to today’s flows face the following
challenges.

4.3.1. Cross-Modular Security Flow — Horizontal Dimension

Hardware designs usually consist of several interconnected modules. Many security issues are
introduced into the system through the integration of these components, and a vulnerability in one
component may only be exploited through its communication with other components (horizontal
dimension). Detecting such vulnerabilities requires analyzing information flows across multiple
components which is usually a computationally expensive task for formal verification techniques (cf.
Sec. 4.2).

This calls for new scalable verification methodologies exploiting specific advantages of different
methods to cover system-wide security for a given threat model. The new methodologies are required
to combine the results of different tools in order to compose global guarantees on the entire system.
Formal verification in such a setting can be based on sound abstraction techniques over different
stages of the design flow.

In these new methodologies, different formal verification tools are applied to different design
components and at different stages of the design flow, however, always under the strict regime of
formally sound compositions and abstractions (cf. Sec. 3.4). This creates new requirements not only
for the single tools but the entire flow. For these reasons, the risks for research targeting system-wide
security issues are generally relatively high. A change of methodology in an industrial setting is
associated with high costs and demands strong justifications.
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Figure 8: Risk and time horizon for research on a cross-modular security flow
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Figure 8 provides an estimate for the risk and time horizon of this research. It ignores the risks and
complexity of cross-modular tasks for individual tools, as they have been described in Sec. 4.2, but
orthogonally addresses these issues for flow and methodology.

While composition and sound abstraction have been explored in the software domain using theorem
proving, this is mostly a completely new research area in hardware, especially, if such an approach is
intended for property checking using standard languages (cf. Sec. 3.4). In the context of confidentiality,
security-related integration conditions of SoC modules may be easier to formulate than for the general
case of integrity. Combining this with sound abstractions further aggravates the challenge. This is
reflected in Figure 8.

4.3.2. Hardware/Software Interface — Vertical Dimension

Many hardware security issues are only exposed if triggered by specific interaction between hardware
and software. For example, a bug in the access control mechanism of the bus may only be triggered if
the firmware configures the access control unit in a specific way. Similarly, access control mechanisms
in the hardware may rely on the operating system to enforce authentication of other parties
demanding access to security-critical data or computing resources. Formal verification of such
mechanisms demands proper modeling of hardware/software interaction. This can be based on
compositional principles (e.g., proven software guarantees are assumptions for hardware proofs) or
the even more demanding approaches by hardware/software co-verification.

Proof techniques across the HW/SW stack (vertical dimension) are of heterogeneous nature. For
example, theorem proving is used at the software level while property checking may be the method
of choice for hardware. Therefore, obtaining global security proofs across the hardware/software
boundary is a great challenge. Compositional procedures based on well-defined assumptions and
guarantees at the interface are generally more tractable for analyzing global behavior than co-
verification creating a joint computational model for both hardware and software. Therefore, co-
verification can only be applied locally but, on the other hand, may have benefits over compositional
approaches by avoiding complicated interface definitions. In those cases they can be an optional
addition to the flow (dashed arrow in Figure 9). We may distinguish two main scenarios.

Interface between hardware and low-level software (firmware): Research is needed to formally
verify security for hardware in combination with the (often huge space of) possible firmware
configurations in SoCs. Modeling these firmware configurations correctly is key to detect
hardware bugs, for example, in local access control mechanisms. Both compositional methods
and co-verification may be worthwhile research topics, while the latter are more demanding and
bear more risk due to limited scalability.

Interface between hardware and system software (operating system): A key research challenge is
to extend the software-level security guarantees provided by an operating system to the entire
hardware/software system. This means that neither side channels nor hardware bugs must

compromise the security guarantees of the operating system. For example, starting from the fully
verified open-source sel4 microkernel [93], the question must be answered what security
objectives have to be met by the hardware and how this can be formally proven. This involves a
global view on the system considering the correct and secure integration of different hardware
modules and their interaction between each other and the system software. Co-verification is
hardly tractable for this purpose. A compositional approach seems more realistic but demands
high effort from all involved parties and bears substantial risk.

The risk and time horizon for research on the hardware/software interface is shown in Figure 9.
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Figure 9: Risk and time horizon for research on the hardware/software interface

4.3.3. Verification-Driven Design — Secure-by-Construction Design

Experience in industry and academia shows that most SoC hardware designs suffer from numerous
security flaws based on both microarchitectural timing side channels and functional design bugs. Fixing
design bugs is usually an ad hoc process which solves the problem by making design changes and/or
communicating possible restrictions for the software layer with the software developers (cf.
Sec. 4.3.2). Fixing timing side channels is a more demanding procedure. Advanced security features
have been proposed, such as those based on information flow tracking [94], [95], that promise
effective measures against these vulnerabilities. However, this comes with significant costs: the
manual RTL design effort increases drastically and the new architectures come with a significant
hardware overhead that so far has only been estimated at the implementation-abstract gem5 level.
Only few RTL architectures with security guarantees for side channels have been proposed. A notable
exception is the approach of [80] which, however, is demonstrated only for relatively small designs,
requires new and laborious design methodologies, demands new operating systems and entails a
significant performance overhead.

Clearly, research is needed to explore new security architectures at the RTL. Within the scope of Lot 2,
formal security analysis can make a major contribution to developing new design methodologies
leading to new security architectures. Formal verification precisely and exhaustively determines all
attack scenarios that are relevant under the specified threat model. This knowledge can be very
valuable to i) determine the root causes of the security weakness and ii) to derive fixes that avoid
excessive conservatism. Note that, without the knowledge of formal tools, current measures for
security often employ “blanket fixes” that cover a large (but not fully understood) spectrum of
weaknesses.

Research is needed to develop new formal verification-driven methodologies for secure-by-
construction hardware designs which

e automate the design and customization of security features, thus avoiding excessive design
costs,
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e provide pinpoint mitigations to security flaws, thus avoiding unneeded hardware overhead
and loss of performance for the secure computing system,

e provide formal guarantees for the final design with respect to the relevant threat models and

e integrate seamlessly into existing design flows, thus avoiding a disruptive change of design
methodologies.
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Figure 10: Risk and time horizon for research on verification-driven secure-by-construction design

The risks and time horizon of this research, as sketched in Figure 10, are in line with those of the formal
tools and methodologies being employed (cf. Sec. 4.2) and grow with the complexity of the considered
hardware systems and security architectures. Note that also here, broad security guarantees for multi-
core systems involving out-of-order cores mark the long-term goal of security research. However,
significant progress seems possible in shorter time frames for problems of lower complexity which still
are highly relevant. For example, the problem of detecting and fixing transient execution side channels
in out-of-order cores was determined in Sec. 3.1 to mark the beginning of a new era in awareness for
hardware security. In fact, building upon the state of the art described in Sec. 3, there is a realistic
chance that solutions to this problem are within the reach of mid-term research projects.

4.3.4. Cost Estimate for Research

We sketch research work packages which are motivated by the research goals formulated above. The
work packages have different components relating the research agendas depicted in Figure 8 to Figure
10. The proposed WPs can be based on the tools and verification methods, as described in Sec. 4.2..
Their research costs are not included in the costs for the following WPs. The following costs cover the
additional methodological aspects of Sections 4.3.1, 4.3.2 and 4.3.3.

The research efforts are denoted in terms of person years (PY). The provided numbers are preliminary
estimates. Actual research costs may deviate from these figures depending on the employed methods
and demonstrators and depending on synergies within a collaborative research consortium. We
further annotate each work package with an estimate for the Technology Readiness Level that can be
achieved by the described research.
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Work Package 4: Formal Verification Flow for SoCs

Horizontal (cross-modular) dimension (2PY): If the quality and type of verification methods
differs between different modules (e.g., formal for core, simulation for peripherals, unknown
for third-party IPs), methods are needed that compose the verification results to provide global
security guarantees. Depending on the individual methods appropriate assumptions have to
be made and sound abstractions can be applicable. A general methodology under these
circumstances can be developed. For high-end SoCs it imports the risks of the verification
methods described in Sec. 4.2.

Vertical (HW/SW) dimension (3 PY): A cross-layer approach to re-establish hardware as root-
of-trust for the entire system is of particular relevance. A compositional approach can be
researched which creates a chain of trust by matching proof assumptions at the hardware level
with verification targets at the software level. The nature of this interface depends highly on
the type of verification method used at each level. Coverification may optionally (dashed line
in Figure 9) reduce the manual effort for defining this interface. For high-end SoCs this research
imports the risks of the verification methods described in Sec. 4.2.

Total: 5 PY
Technology Readiness Level: 4 (for systems of medium complexity)

Work Package 5: Verification-Driven (Secure-by-Construction) Design:

Secure-by-Construction Design driven by formal methods is a completely new field of research. It can
be divided into two sub-fields addressing cores (and in particular side channels in cores) and addressing
entire SoCs (and in particular their correct access control mechanisms).

Cores (7 PY): Research must address the tasks described in Sec. 4.3.3. In particular, ISA-
invisible side channels are a relevant research target since they cannot be fixed at the software
level. The core produced by this methodology should provide formal guarantees with respect
to the data-oblivious programming paradigm. Functional bugs can be addressed for cores of
medium complexity. (For out-of-order cores this topic bears very high risk, as explained in Sec.
4.2.2.) This research involves substantial design efforts for complex cores, for advanced
architectures of information flow tracking and other security features.

SoC (8 PY): When considering entire SoCs consideration of side channels is less important. If
side channels are eliminated in the programmable units (cores and accelerators) the main task
that remains is ensuring functional correctness of each security feature and the correct
interplay between all security mechanisms distributed over the SoC. Access control
mechanisms for local components and the entire SoC must be designed that comprehensively
cover information flows in the entire chip. For RISC-V, for example, such mechanisms (beyond
IOPMP) are not yet available and must be designed from scratch. In spite of this large effort,
research on a systematic methodology providing such mechanisms together with global
security guarantees for the SoC is highly advisable.

Total: 14 PY
Technology Readiness Level: 4
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