cyberagentur

ECOSYSTEM FOR TRUSTWORTHY IT
LOS 1:

FORMAL VERIFICATION
OF COMPLEX SOFTWARE
SYSTEMS - A STUDY

Bernhard Beckert,
Oliver Denninger,
Jonas Klamroth,
Max Scheerer,
Jorg Henf3

February 2023

Herausgeberin:
Agentur flr Innovation in der Cybersicherheit GmbH

Disclaimer

Die hier gedauBerten Ansichten und Meinungen sind ausschlieBlich diejenigen
der Autorinnen und Autoren und entsprechen nicht notwendigerweise
denjenigen der Agentur fir Innovation in der Cybersicherheit GmbH oder
der Bundesregierung.

Diese Studie wurde durch die Agentur fir Innovation in der Cybersicherheit
GmbH beauftragt und finanziert. Eine Einflussnahme der Agentur fr
Innovation in der Cybersicherheit GmbH auf die Ergebnisse fand nicht statt.

Impressum

Herausgeberin: Agentur fur Innovation in der Cybersicherheit GmbH
Grole SteinstralBe 19, 06108 Halle (Saale), Germany

E-Mail: kontakt@cyberagentur.de

Internet: www.cyberagentur.de

Twitter: https://twitter.com/CybAgBund

Die Nutzungsrechte liegen bei der Herausgeberin.

Lizenz: CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/
Erscheinungsdatum: 12.07.2023
Redaktion: Abteilung Sichere Systeme, Referat Sichere Hardware und Lieferketten

https://twitter.com/CybAgBund

VN

5\
February 14,2023 O"'

FZI

— Formal Verification

of Complex Software Systems — A Study

Bernhard Beckert, Oliver Denninger, Jonas Klamroth,
Max Scheerer, Jorg Henf3

February 2023

FZI Forschungszentrum Informatik

Contents

1. Introduction

2. Dependable Software Systems

2.1. Functionaland Non-Functional Requirements
2.2. Properties of Dependable SoftwareSystems,
2.3. Verifying Formal and Informal Properties
2.3.1. PropertyClasses i i e e e e e
2.3.2. InformalProperties e e
2.3.3. FormalProperties
2.4. Verifying Dependability Properties
2.4.1. VerifyingSecurity
3. Formal Methods for Software Verification
3.1. Overview VerificationMethods.
3.1.1. Deductive Verification o
3.1.2. ModelChecking e e
3.1.3. Refinementand Code Generation
3.1.4. AbstractInterpretation. L
3.2. FoundationsofTooling
3.21. SMTandSATSolvers e
3.2.2. Intermediate Languages and Verification Frameworks
3.3. Methodology of Literature Review
3.4. State of the Artin Software VerificationTools
3.4.1. OverviewofTools
3.4.2. MaturityofTools
3.43. LanguageSupport L e e e
3.5. GeneralLimitations
3.5.1. ProgrammingLanguagesFeatures
3.5.2. VerifiableProperties
3.5.3. Limitations regarding the Underlying Method
3.5.4. Tradeoff Between Limitations
3.6. Conclusion e e e e e e e e e e

4. Scalability

4.1.

4.2.

Applications of Software Verification
4.1.1. OperatingSystems
4.1.2. Communication and Cryptographic Libraries
4.1.3. JavaScriptEngines L e
4.1.4. Conclusion
Three Dimensionsof Scalability

o ~N~NOo 0o :n

10
11

13
13
13
14
14
14
15
15
15
16
17
18
19
54
56
57
57
58
58
58

Formal Verification of Complex Software Systems

4.3. ScalabilityModel e
5. Recommended Actions
5.1. Community ACtions e e e e e
5.1.1. C1:Reference Applicationsand Platforms
5.1.2. C2:GuidanceforVerification
5.2. ResearchActions e e
5.2.1. Rl:Interoperability
5.2.2. R2:RobustnesstoChange

5.2.3. R3:Demonstrate Concurrency withRust
5.2.4. R4:Al-based Generation of Specifications
5.2.5. R5:Composability of Properties.
5.2.6. R6: Composability for ComplexSystems

5.2.7. RT7:Robustnessto Change of Complex Systems
5.3. Dependencies betweenActions L L e
6. Summary
Glossary
Bibliography

A. Publications from Snowballing
References e e e e e e

B. Publications from relevant Conferences
References o e e e e e e

67
68
68
70
71
71
71
72
73
73
74
75
75

77

78

82

87
87

89

1. Introduction

Formal software verification methods can prove both functional and non-functional properties of
software systems. Unlike methods such as testing or debugging, they can guarantee that a software
system does not exhibit behavior violating a given specified property. Thus, they achieve a higher
level of trust. Formal verification of software has a long history in research, but has never made the
transition to broad industrial application. This study presents the state of the art in formal verifica-
tion research for software systems and provides recommendations for improving the state of the art
and its industrial application.

The focus of this study is on the vision of full verification of complex software systems, including
the operating system kernel, drivers, system services, middleware services, and applications. In the
past, this vision has been addressed by projects such as VeriSoft [Beckert and Moskal 2010] and
DeepSpec [Appel et al. 2017]. However, it’s still an open question how to scale verification to this
level.

Chapter 2 introduces functional and non-functional properties of software systems. Proving these
properties is the goal of formal methods. Chapter 3 presents the current state of the art on formal
methods. Selected tools are introduced and their maturity for industrial use is evaluated. Chap-
ter 4 discusses the limits of scalability of the presented methods and tools. Chapter 5 recommends
actions to improve the state of the art and to increase broad industrial application.

2. Dependable Software Systems

In this chapter, we discuss dependable software systems. More specifically, we present the notion
of dependability in software systems based on Sommerville’s definition [Sommerville 2011]. We
chose Sommerville because his definition of dependability is widely used in the literature and also
in teaching. Afterward, we present a classification of formal properties used in formal verification.
Finally, we illustrate how formal properties (belonging to individual property classes) are used to
verify dependability properties of software systems. Dependability classes as represented here are
not formally defined, and thus their definitions or even the selection of dependability classes may
varyinthe literature. As we will discuss later, this is however no obstacle to formal verification efforts
as those dependability properties are never verified directly but rather indirectly.

2.1. Functional and Non-Functional Requirements

Before we discuss the details of dependable software systems, we have to distinguish two funda-
mental concepts, namely Functional and Non-Functional Requirements. The very first phase of each
software development process is the requirements engineering phase, where a collection of require-
ments are extracted that a software system has to satisfy. Basically, requirements can be divided
into two main categories, namely functional and non-functional requirements. Functional require-
ments capture all requirements which describe the desired operations and functions provided by
the software system, e.g., the software system must provide login functionalities. In contrast, non-
functional requirements (also referred to as quality requirements) refer to requirements of qualita-
tive nature, e.g., performance or security. A non-functional requirement could, for example, require
that the response time of a software system must always be less than a particular threshold or that
down-times must be low.

2.2. Properties of Dependable Software Systems

We consider dependability of software systems according to Sommerville [Sommerville 2011] who
defined as a property that reflects the degree of trustworthiness one assigns to a software system.
Hereby, trustworthiness refers to the confidence a user associates with the software system; that is,
whether the system behaves as expected and does not malfunction. Basically, Sommerville divides
dependability into four principal dimensions, namely Availability, Reliability, Safety, and Security
(see Figure 2.1). The individual dimensions are defined as follows:

+ Availability: System availability is defined as the probability of a system to be up and running
to deliver its provided functionalities on request.

« Reliability: Contrary to availability, system reliability is defined as the probability that the
system provides its functionalities as expected or as defined in the system specification.

Formal Verification of Complex Software Systems

[Dependability}

v v v v
[Availability] [Reliability J { Safety] [Security]

Figure 2.1.: Dependability properties [Sommerville 2011].

« Safety: System safety refers to the ability to operate without catastrophic failure, i.e., the sys-
tem will not cause damage to people or its environment.

+ Security: System security is considered as the ability of a system to protect itself against ac-
cidental or deliberate intrusion.

Note that there are further possible properties one can associate with dependability such as Re-
pairability, Survivability, Error Tolerance, and Maintainability. However, in this study, we focus on
the principal dimensions of dependability. Moreover, we focus on reliability, safety, and security.
Availability of a system is oftentimes achieved by architectural means (e.g., redundancy) rather than
with formal methods. We still argue that certain aspects of availability may be subject to formal veri-
fication. Consider for example the integration of a load balancer in order to handle a high number of
requests. Thisisan architectural decision, however it still would be necessary to verify the functional
correctness of this load balancer in order to get the guarantees required in the formal setting.

This is a perfect example of how the different dependability classes are not easily separable from
one another. At the very least, reliability cannot be achieved if the system is not safe or secure, but
there are less clear examples of how these classes can overlap. Another typical example is memory
safety. A system with code containing buffer overflows is potentially unsafe, but this can also lead to
a security breach. So, verifying the absence of buffer overflows can be considered both safety and
security related.

2.3. Verifying Formal and Informal Properties

In this section, we present different property classes into which formal properties (e.g., Spatial Sepa-
ration [Baumann et al. 2011]) are classified. In principle, we distinguish between two different types
of properties, namely Informal- and Formal Properties. Informal properties include desirable prop-
erties or requirements for an entire system; formal properties describe (code-near) properties that
are required for an informal property to be true. That is, a high-level informal property is realized
by (low-level) formal properties that need to be verified for the informal property to be true. For ex-
ample, the memory (or spatial) separation property is shown in [Baumann et al. 2011] by verifying
Function Contracts and Invariants (including Ownership). Generally, a property (whether formal or
informal) has a property class. A property class groups properties with the same underlying con-
cern. In the following, we present several property classes based on [Beckert and Hahnle 2014] and
discuss formal and informal properties afterwards.

Finally, note that in the literature, no general classification or distinction between properties and
property classes is made. However, it is important to distinguish properties because some describe
what to verify (i.e., informal properties) and others describe how to verify (i.e., formal properties).

Formal Verification of Complex Software Systems

2.3.1. Property Classes

In [Beckert and Hahnle 2014], several property categories or classes are presented, namely Safety,
Liveness, Uniform, Generic, Lightweight, Functional Correctness and Relational properties. Each prop-
erty class includes various manifestations of properties considered as instance of a property class,
e.g., spatial separation property is an instance of the uniform property class. In the following, we
briefly describe the distinct property classes taken from [Beckert and Hahnle 2014].

« Safety and Liveness: Safety and liveness properties are interconnected in that they are both
defined over abstract (state based) system models. Safety properties are defined to check
that a critical system state is never reached; liveness properties verify that the system will
finally reach a desired system state. There are numerous examples of safety and liveness
property instances (commonly described by temporal logic) since the definition of a state is
fairly domain-specific. Note that the above safety definition differs from the safety definition
of [Sommerville 2011] in that the former is formally defined and is therefore subject to for-
mal verification. Moreover, the notion of safety for verification mostly relates to parts of the
system (i.e., components or sub-systems); on the contrary, safety according to Sommerville
always refers to a property of the entire system. However, bare safety properties do not guar-
antee the safety of a system according to Sommerville because when considering safety at the
system level, other properties such as liveness or relational properties must be taken into ac-
count as well. Instead, they subsume a collection of properties associated with safety in the
formal verification community.

+ Generic and Uniform Generic and uniform properties refer to the absence of typical errors
such as buffer overflows or division by zero, and are thus fundamental for functional as well
as non-functional requirements such as security aspects.

+ Lightweight: Lightweight properties refer to simple and less expressive properties. Examples
include type checks and simple Boolean expressions (such as assertions) without considering
quantifiers or other higher-order logic features.

+ Relational: Relational properties relate the results of different system calls or different ver-
sions of the system to each other to verify specific functional requirements.

+ Functional Correctness: Functional correctness means that a system satisfies its functional
specification for all runs, i.e., all possible inputs and initial states.

Each property class contains numerous properties or instances which are either formal or informal.
Moreover, an informal property is verified by proving a set of formal properties. More specifically,
while informal properties describe desirable system-level properties, formal properties describe
specific (code-near) properties that determine how the informal property can be verified. In the
following sections, we present informal and formal properties. We discuss which property classes
are formal or informal, and thus categorize whole sets of properties as formal or informal. Finally,
we provide an overview of established and fairly known properties.

2.3.2. Informal Properties

Informal properties describe desirable properties of a (sub-)system. Moreover, informal properties
are defined in a declarative manner, i.e., they can be understood as a system requirement. However,

Formal Verification of Complex Software Systems

the declarative nature of these properties complicates the verification process. Instead of directly
verifying an informal property, one makes use of several formal properties (embedded in a strategy)
to prove the informal property. For example, an operating system kernel (preferably) implements
a Separation Kernel architecture for which the properties Data Separation, Information Flow, Fault
Isolation, and Time Separation (which are all examples of informal properties) have been verified.
However, the four properties cannot be proved directly, but only by considering formal properties
that are systematically included in a proof strategy.

We consider all properties that represent instances of the classes uniform, safety, liveness and
relational as informal properties. This results mainly from the observation that in literature proper-
ties of said classes are never verified directly but by using formal properties. Table 2.1 provides an
overview of informal properties well-known in the verification community.

2.3.3. Formal Properties

While informal properties are typically high-level or system-level properties, formal properties tend
to be closer to the code of the system. The verification of informal properties requires formal prop-
erties that specifically determine how an informal property can be proved. Note however that the
amount of formal properties needed to realize one informal property is not related to its complexity.
The fact that informal properties are realized through formal properties is illustrated in Figure 2.2.

Informal properties Formal properties

Safety

Deadlock

Relational
Mutual exclusion

freedom

Simulation
relation

Bisimulation

Generic

Absence of typical
errors (e.g. buffer overflow)

Liveness

Starvation
freedom

Functional
correctness

Invariant

Termination

1
1
1
1
1
1
1
1
1
1 Boolean expressions
1
1
1
1
1
1
1
1
1

Uniform

Ownership

Spatial
seperation

Non-bypassable

& Function contracts

Property class

verified by
Property instance

Figure 2.2.: Verifying property class instances with formal properties.

As an example, recall the work of [Baumann et al. 2011]; here the authors verified spatial sepa-
ration (informal property) of a kernel memory manager by using several formal properties, namely
Function Contracts, Invariants, and Ownership.

We consider properties belonging to the classes generic, lightweight and functional correctness as
formal properties. In the following we discuss three formal properties that are commonly known and
used to verify informal properties, namely Function Contracts, Invariants, Ownership, and Coupling
Invariant

+ Function contract: Function contracts are attached to a function or method by defining pre-

Formal Verification of Complex Software Systems

Informal properties

Class | Instance | Description

Safety Mutual exclusion No two processes execute in critical sections si-
multaneously [Alpern and Schneider 1985].

Safety Deadlock freedom No deadlocks occur.

Liveness Starvation freedom A process makes progress infinitely often [Alpern
and Schneider 1985].

Liveness Termination Completion of the final instruction, i.e., the pro-
gram terminates [Alpern and Schneider 1985].

Liveness Guaranteed service Every service request is satisfied eventually
[Alpern and Schneider 1985].

Relational Simulation relation One system is a refinement of another [Beckert
and Hahnle 2014].

Relational Bisimulation relation Two systems exhibit the same behavior [Beckert
and Hahnle 2014].

Relational Non-interference The system does not reveal information about the
initial value [Beckert and Hahnle 2014].

Uniform Data separation A partition (which holds several applications) is
implemented as a separated resource [Zhao et al.
2017].

Uniform Information flow Information that flows from one partition to oth-
ers have an authenticated source and authenti-
cated recipients [Zhao et al. 2017].

Uniform Faultisolation Theresulting damage by a fault is limited [Zhao et
al. 2017].

Uniform Temporal separation Components can share the same physical re-
source in different time slices without affecting
each other [Zhao et al. 2017]

Uniform Non-bypassable Security functions cannot be circumvented [Van-
fleet et al. 2005].

Uniform Evaluatable Security functions are small and simple such that
correctness can be proved [Vanfleet et al. 2005].

Uniform Always-invoked Security functions are invoked at any time [Van-
fleet et al. 2005]

Uniform Tamper proof Security functions and their data cannot be mod-
ified without authorization [Vanfleet et al. 2005]

Uniform Authentication Certain events are always happening in a specific
order [Chaki and Datta 2009]

Uniform Secrecy Refers to the inability of an attacker to calculate a
specific message [Chaki and Datta 2009]

Lightweight Code assertion Boolean expressions of the target programming

language [Beckert and Hahnle 2014]

Table 2.1.: Examples of established and well-known informal properties for each property class.

Formal Verification of Complex Software Systems

and postconditions. A precondition describes the required state (or properties of the state) of
the system that must hold before executing the method. A postcondition describes the prop-
erties that must be satisfied after executing the method (starting in state where the precon-
ditions hold true). Additionally, some languages allow defining frameconditions in function
contracts that describe which part of the memory may be modified or read by that function.

+ (General) Invariant: Aninvariant defines assertions or properties that must hold true through
out the execution of the system, e.g., z > 0 in any state (or at least a previously defined set
of states). Invariants can be manually specified and are therefore arbitrarily complex, but can
also include properties such as type checks. A very complex example of type checks is Own-
ership, which refers to conditions where an object of a program is tied to exactly one owner;
only the owner is allowed to access the object. Ownership properties are especially important
when verifying security properties.

+ Couplinginvariant: Coupling invariants describe properties specific to relational verification
where two executions (possibly of the same system) are set into relation. Possibly the most
important instance of relational verification in this work is Refinement. Refinement is a ver-
ification method (discussed in more detail in Section 3.1.3) in which the functionality of the
system is specified (e.g., by first-order logic) and gradually transformed by a series of refine-
ment steps into an executable system model. Crucially, each refinement step preserves the
behavior of the refined system model such that the functionality of the system is guaranteed.
Couplinginvariants spell out the relationship between runs of the more abstract and the more
concrete system and are an important tool to prove correct refinement.

Table 2.2 provides an overview of common examples of formal properties (including generic prop-
erties). Note that we deliberately do not discuss generic properties. The term generic property gen-
erally refers to common code bugs, such as buffer overflows or null pointer exceptions. Proving
functional correctness, i.e., that a system behaves as specified, often naturally ensures the absence
of typical bugs (generic properties). Conversely, it is often much easier to verify generic properties
because they do not require formal specifications specific to the software, but this does not give any
guarantee of functional correctness.

Since generic properties cover many real-world bugs, generic property verification tools are quite
valuable. In 2022, over 800 buffer overflows were discovered in major software?.

2.4. Verifying Dependability Properties

In this section, we illustrate how formal properties (belonging to a property class) are used to verify
the dependability properties of software systems. Dependability properties are complex high-level
properties that are rather difficult to be fully verified. However, each dependability property can be
broken down into simpler properties [Sommerville 2011], e.g., reliability is supported by verifying
safety as well as functional correctness. Such simpler properties are associated with informal prop-
erties, which in turn are verified by a set of formal properties. In Table 2.3, we list several examples
of works from literature which verify dependability properties (according to Section 2.2) by using
informal and formal properties.

Reliability and safety are two closely related system properties. While safety properties of a sys-
tem are highly domain-specific (i.e., depending on the definition of a state), reliability properties

'Buffer overflow CVEs: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

10

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

Formal Verification of Complex Software Systems

Formal properties
Class | Instance | Description
Functional Function contracts See Section 2.3.3
correctness
Functional (General) Invariant See Section 2.3.3
correctness
Functional Ownership See Section 2.3.3
correctness
Functional Frame condition The set of elements that may or may not be mod-
correctness ified during state transition [Przigoda et al. 2018].
Functional Coupling invariant See Section 2.3.3
correctness
Generic Null pointer exception Occurs when variables are accessed that do not
point to any object.
Generic Index out of bounds Invalid index when accessing elements of an array.
Generic Buffer overflow Accessing memory outside the reserved limits of a
buffer.
Generic Stack overflow Stack size grows beyond the memory limits.

Table 2.2.: Examples of established and well-known formal properties for each property class.

are indirectly addressed by proving correctness of critical parts of the system. In Table 2.3 a few
examples are shown which verify safety and reliability properties.

2.4.1. Verifying Security

Just as reliability and safety, security refers to a complex dependability property that can be barely
fully verified. The term security is not even formally defined to an extent that a verification in the
formal sense would be possible. Instead of verifying security as such, one has to focus on proving
simpler sub-properties. More specifically, verifying security is often tied to defining an adversary
model, which describes the capabilities of an adversary. Based on this model, a set of measures
can be defined that prevent the adversary from doing harm. Crucially, this means that attacks not
covered by the adversary model may have no measures to prevent them and are thus potentially
still possible. One major concern when verifying security are side channel attacks in which the ad-
versary derives information indirectly from observations about the system (e.g., the response time).
To account for that aspect of security, additional verification methods proving bounds for resource
consumption have to be implemented. A collection of approaches that verify security properties
(or rather sub-properties) by considering various informal properties and formal properties, respec-
tively, are shown in Table 2.3.

11

Formal Verification of Complex Software Systems

Reference Depend- | Property | Property Formal Tool (Lan-
ability class properties guage)
property

Safety n.a. -
[Hawblitzel et al. 2017] Safety Liveness - - IBor}Fleet
Relational | Simulation Coupling in- (Dafny)
relation variant
[Baumann et al. 2011] Security Uniform Sp(:atlal sepa- | Function VCC (C)
ration contract,
Invariant,
Ownership
Uniform Spatial sepa- | Invariant
. . . Isabelle
[Butterfield et al. 2014] Security ration (HOL)
Relational | Simulation Coupling in-
relation variant
Generic Correctness Function
contract
[Penix et al. 2005] Security Liveness Tempor.al) SPIN
separation (Promela)
Uniform Spatial sepa- | Invariant
[Heitmeyer et al. 2006] Security ration PVS
Relational | Simulation Coupling in-
relation variant
Generic Correctness Function
contract
Uniform | Spatial sepa- n.a.
[Dam et al. 2013] Security ration Hol4
Relational | Bisimulation | Function
relation contract
Relational | Non- n.a.
interference

[Abbassi and Joua 2014] | Reliability Safety Transac‘tlonal Invariant Event-B

properties

Table 2.3.: Example references verifying dependability properties. Note that the properties of data
separation, information flow, and fault isolation form spatial separation properties [Zhao

et al. 2017].

12

3. Formal Methods for Software Verification

In this chapter, we present the current state of the art in formal methods for software verification
and the tools available. First, we explain the most common formal methods used to verify pro-
grams. Then, we explain some foundations of verification tools, followed by how we conducted
our research. Finally, we present a list of tools categorized according to these methods and their
properties.

3.1. Overview Verification Methods

The following general descriptions of the four main verification methods are derived from a 2014
state of the art study on software verification [Beckert and Hahnle 2014].

3.1.1. Deductive Verification

Under Deductive Verification, we subsume all verification methods that (1) use an expressive (at least
first-order) logic to state that a given target system is correct with respect to some specification and
that (2) use logical reasoning (deduction) to prove the validity of such a statement. Perhaps the
best-known approach along these lines is Hoare logic [Hoare 1969], but it represents only one of
three possible architectures.

The first one being a general deductive framework in which the semantic of any programming or
specification language can be modeled. Typical examples of such frameworks are Isabelle and Cogq.
Based on a formalisation of language semantics, nearly arbitrary properties of programs can be ver-
ified. The downside to this high expressiveness is the typically high amount of manual effort needed
to formally define the semantics of a language, as well as to conduct proves. However, impressive
case studies have been carried out with this approach, including formalisations of the floating-point
logic of x86 processors, a nontrivial fragment of the Java language, the C language, and an OS kernel.

The second approach exploits program logics, where the semantic of a language is directly em-
beddedinto alogicand deductive rules. This approach has the advantage that language specific fea-
tures can naturally be exploited when conducting proofs and the language semantics do not have to
be defined by the user as they are inherently included in the logic. Examples of tools in this category
include KeY and KIV.

The last category of deductive verification tools are those based on verification condition gener-
ators. These are based on rewriting rules that encode the language semantics. These rules are used
to deduce a set of first-order assertions from a given program, which can then be passed on to some
automated reasoning backend. Thus, this approach is the one with the highest degree of automa-
tion. However, it is hard for users to influence the proof search, check for intermediate results (such
as partial and failed proof attempts) and relate the response of a reasoning backend back to the
source code. Examples of this kind of approach are Why3 and Dafny.

All these approaches rely on extensive auxiliary specification (additional specification like loop
invariants). Similar to lemmas in mathematical proofs, auxiliary specifications are needed to split

13

Formal Verification of Complex Software Systems

proofs in manageable sub-proofs. Without them, full functional correctness of large and complex
systems cannot be verified. While general verification frameworks have the highest expressiveness
when specifying properties, they normally also require the most amount of manual work. This is a
typical tradeoff in software verification.

3.1.2. Model Checking

For the Model Checking approach, a (software) system is modeled as a finite state automaton where
each state is a possible variable assignment. Given a property (formalised, e.g., in propositional
temporal logic), model checkers try to prove that each possible trace of the state automaton meets
the property. The main issue with this approach is the exponentially growing number of possible
states, which can get prohibitively large when modelling realistic systems (known as the state ex-
plosion problem). In order to address this challenge, several approaches have been proposed that
make it possible to deal with real sized systems (even infinite automatons in some cases). One of
these approaches is to limit the scope of considered executions by some given bound (bounded
model checking). The advantage of model checking is that it can be very well automated. Typical
examples of tools using this approach include CBMC and nuXmv.

Lately, there has been a trend in the literature to also subsume verification tools and methods
that use reasoning technology, such as SMT and propositional satisfiability (SAT) solving under the
term “model checking”.

3.1.3. Refinement and Code Generation

Refinement is the approach in which a system is modeled at a very high level and then gradually
refined in possibly many steps down to the desired final system (typically source code). For each of
these refinement steps, it has to be proven that the original properties are maintained. Thus, the
resulting final refinement still has the originally specified properties. This approach is often imple-
mented using high-level specification languages based on set theory. The probably most prominent
example of the approach is the Event-B language and its tools.

A closely related approach is to verify desired properties in a dedicated abstract programming
language that is specifically designed to facilitate verification and to then generate code in some
established programming language. This approach has the advantage that the verification effort is
lifted to a suitable language/system in which specification and verification is usually comparatively
easy while the ultimately resulting code is still in a standard programming language. Having code in
a standard language allows a seamless integration into existing (legacy) systems. Typical examples
of approaches like this include Dafny and F*.

3.1.4. Abstract Interpretation

Abstract Interpretation is based on the idea to introduce abstract domains for the variables of a sys-
tem (the domain of a variable contains its possible values). These abstract domains are chosen to
be sound and finite. The approach guarantees that a property proven using the abstract domains
holds for the original domains as well, while the abstract domain being finite enables easier/faster
analysis of the problem as it becomes decidable. This can be viewed as a general approach to rea-
son in finite domains about infinite state systems. This technique allows for the very fast analysis
of comparatively large systems. However, completeness is reduced, i.e., not all valid properties that

14

Formal Verification of Complex Software Systems

can be proven for the concrete domain can be proven using an abstract domain as well. Several
tools use this approach for program analysis, including Astrée and Frama-C.

3.2. Foundations of Tooling

In the previous section, we have presented the main methods of formal software verification. For
each of these methods, there is a wide range of tools available implementing the methods for all
varieties of programming languages and properties. However, there are some common building
blocks on which the majority of the most successful tools are based. In this section, we discuss
these building blocks.

3.2.1. SMT and SAT Solvers

Beckert et al. call efficient automated reasoning a “ubiquitous sub-task of hard- and software verifi-
cation” [Beckert and Hahnle 2014]. In the majority of currently well established tools, this sub-task is
carried out by SAT or SMT solvers. SMT solvers do not only provide the easiest way to automate rea-
soning, but also most of them support a standardized input language (SMTLIB2 [Barrett et al. 2016]),
which allows SMT solvers to be used interchangeably. As such, they are used as a backend to veri-
fication tools. The typical workflow is that a verification tool processes the input (specification and
program) and internally calls an SMT solver to discharge the resulting proof obligations (which are
formulas not containing program elements any more). Due to the widespread use of these solvers
for program verification, discussing them here is inevitable. Some of the most well established SMT
solvers are Z3 [Moura and Bjgrner 2008], CVC5 [Barbosa et al. 2022], Yices [Dutertre 2014], MathSAT
[Cimatti et al. 2013], and Alt-Ergo [Conchon et al. 2018]. SMT solvers as a stand-alone tool are not
verification tools, but most fully automated verification tools would be inconceivable without them.
As such, we consider them to be one of the most important building blocks of formal software veri-
fication tools. Note also that any improvements to these building blocks (e.g., improved SAT solvers
based on quantum computers (see Section 4.3) are direct improvements to any tool that builds on
them.

Similarly to fully automatic reasoning as a backend, interactive theorem provers provide the ca-
pabilities to reason manually, often times over even more complex properties. Well known exam-
ples of such systems are Coq, Isabelle and Lean among others. However, all of those tools provide a
more direct way to reason about programs than SMT or SAT solvers do, which is why we listed them
explicitly in the section on tools (Section 3.4) and do not discuss them here in more detail.

3.2.2. Intermediate Languages and Verification Frameworks

Another commonly used building block for verification tools is the concept of an intermediate lan-
guage or platform. This concept is familiar from programming languages that rely on an interme-
diate representation instead of direct compilation (e.g., LLVM IR [Lattner and Adve 2004] and Java
bytecode). For verification purposes, this means that instead of translating a program together with
its specification directly into some logic representation, the problem statement is first translated
into an intermediate language. This has two main advantages: (1) translation into an intermedi-
ate language is often much easier because it is closer to a programming language, (2) formulating
a verification problem in an intermediate language allows any solver capable of dealing with that

15

Formal Verification of Complex Software Systems

intermediate language to be applied. Examples of well-known intermediate languages are Boogie
[Barnett et al. 2006], Viper [Mdiller et al. 2016], and WhyML [Fillidtre and Paskevich 2013].

Related to thisis the idea of frameworks that facilitate the construction of verification tools. There
are several examples of such frameworks, using different approaches to provide such a general
framework. Well-known examples include the frameworks associated with the intermediate lan-
guages mentioned above, as well as others such as KLEE, which is a symbolic execution engine for
LLVM on which several tools are built [Cadar et al. 2008]. And the K-Framework, which is a frame-
work for formalizing the semantics of programming languages, can be used to construct verification
tools based on that formalisation [Rosu and Serbanuta 2010].

3.3. Methodology of Literature Review

The state of the art in software verification, described in the next section, is based on a literature
review. To reduce the risk of missing important publications of the wide area of formal methods, we
applied different investigation approaches.

Scope Before discussing the process of our literature research, we define the scope of this study -
describingthefield of formal methods for software, particularly methods for verification for software
systems. We explicitly do not consider the following aspects or features of systems:

+ Hybrid properties: properties with a physical component or a logic which involves continuous
behavior.

+ Machine-learning-based systems with components that are learned through some statistical
approach (e.g., neural networks or HMMs). Verifying ML-based systems is a very active field of
research in the last few years, but will not be considered for this study.

+ Probabilistic properties: components with probabilistic (or non-deterministic) behavior.

+ Anything below operating system level, this includes instruction set architectures and hard-
ware.

+ Bug-finding methods: we limit the scope of this work to verification methods and exclude
methods like bug finding or test generation. As a rule of thumb, we will consider everything
that is able to provide some kind of formal guarantee rather than to just provide warnings or
to point out mistakes.

Note that we explicitly state these restrictions for properties or components of systems, rather for
entire systems themselves. This allows us to consider systems partially in accordance with the de-
fined topic. As an example, consider the control software for a drone system. We would consider the
software itself with all the possible properties, be it functional correctness, safety, or security, but
we would not consider how to model the hybrid dynamics of a flying object.

Systematic literature search We conducted a systematic literature search with several branches
of investigation in order to build a broad knowledge base. As a starting point, we considered a survey
by Beckert et al. in 2014 [Beckert and Hahnle 2014], which describes the state of the art at this point
in time. This paper served as the basis for a snowballing process, where we collected all the papers
citing that survey, resulting in a list of 62 papers. Of these papers, we only included those that

16

Formal Verification of Complex Software Systems

met the following criteria (1) peer-reviewed, (2) published at a conference ranked B or higher!,
(3) matches the defined range of topics, and (4) written in English or German. The result of the
snowballing and filtering process was a list of 11 papers (see Appendix A).

As a second source of scientific publications we considered all papers published 2014 or later
at one of the following conferences: FASE, TACAS, FM, CAV, IJCAR and NFM. These conferences
are to the best of our knowledge and after consideration with experts, the most influential ones in
the field. We automated the process of finding all publications with the mentioned conditions and
thus were able to gather a table of 2223 papers. For each paper we extracted and saved the following
information: title, authors, #citations, #accesses, abstract, year of publication, conference, and link.
Theinformation for number of citations as well as number of accesses were taken from the website of
Springer? on October 17,2022. Out of this large body of papers we only consider the ones meeting
the following criteria (1) more than 50 total citations, or (2) more than 8 citations per year (on
average), or (3) more than 10.000 accesses, and (4) matches the defined range of topics.

This resulted in a set of 39 papers that we considered (see Appendix B). The thresholds chosen for
citations and accesses were chosen in such away that the number of papers considered for this state-
of-the-art analysis was considered manageable. The 39 papers selected represented more than 3%
of the recorded accesses and more than 13% of the recorded citations, while representing less than
2% of the papers considered. This further confirms our intuition that the papers selected in this way
are highly relevant contributions.

As an additional source of insight, we conducted a brief unstructured web search on the afore-
mentioned topics. The goal was mainly to identify relevant news about the use or spread of formal
methods, especially in industry, rather than to collect more scientific publications. In this way, we
tried to cover the social aspect of how formal methods are currently discussed in the media.

Last but not least, we examined the most well established competitions in the field of formal
verification, which we consider to be SV-COMP [Beyer 2021] and VerifyThis [Huisman et al. 2020;
Dross et al. 2021]. They cover different notions of formal verification. While SV-COMP is explicitly
“an annual comparative evaluation of fully automatic software verifiers for C and Java programs”
[Beyer 2021], VerifyThis tends to “emphasizes verification problems that go beyond what can be
proved fully automatically and require instead human experts” [Dross et al. 2021]. This leads to a
very different set of tools participating in these competitions.

We limited the tools considered to those which (1) have a sizable community, (2) have been
present for several years as evidenced by both publications and releases, and (3) are not close
variants of other tools included. Especially the last point is sometimes hard to establish, as it is
normal for tools to be developed in a particular environment and to spawn slightly modified ver-
sions. We try to cover only the most relevant tool of each family, rather than including several closely
related tools. In total, we collected 50 papers and 31 tools that we considered for our state-of-the-art
analysis.

3.4. State of the Art in Software Verification Tools

The presentation of software verification tools begins with an overview of the tools, their supported
programming languages, and their verifiable properties. This is followed by a detailed evaluation
of each tool with respect to industrial use. Finally, the supported languages and general limitations
are discussed, followed by a conclusion.

!Based on scores from the CORE Conference Ranking https://www.core.edu.au/conference-portal
2Springer Publishing: https://link.springer.com/

17

https://www.core.edu.au/conference-portal
https://link.springer.com/

Formal Verification of Complex Software Systems

3.4.1. Overview of Tools

The following overview of software verification tools, selected according to the procedure in Sec-
tion 3.3, is based on a literature review and information provided by the development community
of each tool via web sites. There has been no evaluation of the tools themselves.

Table 3.1 shows a list of all tools along with the verification method, supported programming lan-
guages, and verifiable properties. Some tools found in the literature search were excluded because
they are no longer maintained. The language column indicates the primary programming languages
for which atoolis designed or used. This does not reflect the fact that some tools are capable of gen-
erating code for a variety of target languages. Nor does it reflect the fact that tools based on, e.g.,
higher-order logic can be used to define semantics for any programming language.

| Tool | Formal method | Language | Properties
ACL2 deductive verification | Lisp functional correctness, bug finding
(interactive)
Agda deductive verification | Agda functional correctness
Alloy Analyzer | refinement, deduc- | Alloy functional correctness, safety
tive verification
AproVE symbolic execution Java, C, | termination
LLVM, Haskell,
Prolog, TRS
Astrée static analysis C,C++ safety
CBMC deductive verification | C, Java bug finding, lightweight properties
Coq proof assistant Coq functional correctness, safety, secu-
rity, refinement
CPAChecker model checking C safety, functional correctness
Dafny deductive verification | Dafny functional correctness, bug finding
Event-B deductive verifica- | Event-B refinement
tion, refinement
F* deductive verification | F* functional correctness
Frama C deductive verification | C functional correctness, bug finding
(batch)
HOL4 proof assistant HOL functional correctness
Isabelle proof assistant HOL functional correctness, safety, secu-
rity, refinement
KeY System deductive verification | Java functional correctness, bug finding
(test case generation)
KIV deductive verification | Abstract functional correctness, bug finding,
(interactive) System De- | security, refinement
scription
Lean deductive verifica- | LEAN functional correctness
tion, proof assistant
mCRL2 model checking labeled transi- | functional correctness
tion systems

Table continued on the next page

Table 3.1.: Overview of all tools described in detail

18

Formal Verification of Complex Software Systems

(batch)

| Tool | Formal method | Language | Properties
Microsoft Win- | symbolic execution C, C++ safety, reachability
dows Static
Driver Verifier
Nagini verification condition | Python functional correctness
generation, symbolic
execution
NuXMmv model checking NuSMV lan- | safety
guage
OpenJML deductive verifi- | Java functional correctness, safety
cation, runtime
verification
PVS proof assistant PVS functional correctness, safety, secu-
rity, refinement
SeaHorn model checking, ab- | LLVM, C termination, reachability
stract interpretation
SMACK model checking LLVM functional correctness
Software symbolic execution C, Java, Cryp- | functional correctness
Analysis Work- tol
bench SAW
Spark ADA symbolic execution, | Ada functional correctness
static analysis
SPIN model checking Promela, ex- | safety
traction from
C possible
TLA+ model checking State ma- | functional correctness
chines
UPPAAL model checking custom timed | safety, liveness properties of tempo-
automata ral automata
VeriFast deductive verification | Java, C functional correctness

Table 3.1.: Overview of all tools described in detail (cont.)

A reduced list of tools that support the most relevant languages in practice, C, C++, Java, and
Rust, is shown in Table 3.2. The table shows the languages and properties covered by the tools. See
Section 3.4.3.2 for a discussion of important languages for basic IT systems.

3.4.2. Maturity of Tools

This section discusses software verification tools and their maturity with respect to industrial use. A
mature tool should have a sufficiently large developer community so that continued availability and
maintenance can be expected over several years. Furthermore, the effort to use the tool should be
low in terms of technical requirements, required expertise, and execution of the actual verification.
Last but not least, the tool should be able to verify relevant properties without serious limitations.
The three dimensions - community, effort, and capability - are further broken down into sub-
dimensions such as availability, expertise, and automation for effort, and scalability and limitations

19

Formal Verification of Complex Software Systems

| Formal method | Tool | C | ¢++ | Java | Rust |
CBMC fc fc fc
Frama C/Why | fc
. e L. KeY fc
Deductive Verification OpenJNL o
Isabelle fc fc
VeriFast fc fc
AproVE te te
CPAChecker sa, fc
Model Checking SAW fc fc
SDhvV sa sa
SMACK fc fc fc
. Astrée sa sa
Abstract Interpretation Seatorn T T T

Table 3.2.: Overview matrix of tools and their supported programming language, as well as verifiable
properties (fc = functional correctness, sa = safety, te = termination).

for capability. Each dimension or sub-dimension consists of either multiple classes or parameters.
Table 3.3 provides an overview of the maturity assessment dimensions, along with the classes and
parameters.

The community dimension includes three classes - large, medium, and small. A large commu-
nity consists of many stakeholders (companies, institutions, universities, etc.), each with several
people frequently contributing both new functionality and maintenance of the tool suite. There are
also regular publications about the tool by different authors. A medium-size community consists
of only a few stakeholders, but they contribute regularly. Publications are mainly limited to authors
who directly contribute to the content development of the tool. A small community is mostly sup-
ported by a single stakeholder, and there is sporadic development of the tool.

The effort dimension is divided into three sub-dimensions: availability, expertise, and automa-
tion.

Availability describes the effort required to get a tool up and running and to keep it running.
In particular, precompiled binaries for the major operating systems (Windows, Linux, MacOS) and
an up-to-date software stack are important. Typical examples of an outdated software stack are a
limitation to Ubuntu 16.04 or Python 2. In general, it is preferable for a tool to be available as a
standalone program. Integration as a plugin in frameworks is often advantageous. However, this
can quickly create a dependency on a particular framework that users may not want to use in their
software development process (in addition, if the tool is updated, the plug-in must be updated as
well). The usefulness of a GUI depends heavily on the type of tool. An automated framework may
only be run by scripts anyway, while a tool with a lot of manual work will benefit greatly. Whether
a tool is available as open source or not is generally irrelevant for the evaluation of industrial use.
However, with respect to the underlying goal of this study to build a community that advances the
state of the art, open source is preferable.

The expertise sub-dimension includes which programming and specification languages a tool
supports. If the software to be verified has to be written in a tool-specific language, this implies
a considerable amount of effort to learn and use the language. There are tool-specific languages,
such as Dafny (see Section 3.4.2.9), that can be translated into C after verification. The code can

20

Formal Verification of Complex Software Systems

| Dimension | Classes and parameters | Effect |
. large - frequent releases/commits and publications ++
Community . . .
medium - regular releases/commits and publications +
(class) . . "
small - sporadic releases/commits and publications -
pre-compiled binaries available
Effort: support for major 0S +
A up-to-date software stack ++
Availability
standalone executable +
(parameter) . .
graphical user interface °
open source o
Effort: no custom programming language required +
. common specification language used +
Expertise .
textbook available +
(parameter) . . .
comprehensive online manual or support available ++
Effort: fully automated (push button) ++
Automation autoactive +
(class) interactive -
Capability: industrial use cases ++
Scalability multiple academic examples +
(class) small academic examples

Table 3.3.: Dimensions and sub-dimensions (classes or parameters) and theirimpact on the maturity
assessment (++ strongly preferable, + preferable, o no preference in general or tool depen-
dent, - undesirable).

then be further processed in the usual tool chains used by developers. However, this only covers
some parts of the development process. The use of common de facto standards for specification
languages such as ACSL [Baudin et al. 2008] or JML [Chalin et al. 2005] is therefore advantageous.
We use the term de facto standard to describe languages that are well known and used by a wide
range of stakeholders, although they have never been approved by a standards body. To familiarise
yourself with a tool, it is helpful to have a textbook that describes in detail how the tool works.
Comprehensive online documentation with questions and answers and examples is also helpful.
Especially if they include support from a community or company.

The automation dimension comprises three classes that describe the kind of interaction needed
for verification. Fully automated tools such as CBMC (Table 3.9) require the least effort. Autoactive
verification tools such as Dafny (see Table 3.12) require some interaction in the form of extensive
specification (sometimes iteratively refined) but run without further manual actions afterward. In-
teractive tools, such as Isabelle (see Section 3.4.2.14), rely on user input for extensive specification
as well as during the proof itself. Note, however, that these tools often have powerful automation
capabilities that allow many proofs to be made with very little manual interaction. Note also that, as
we discussed earlier in the context of software verification, automation most often comes at the cost
of aloss of expressiveness. Tools that require the most manual effort also provide the most powerful
logic, and thus the ability to prove complex properties (see Section 3.5.4 for a detailed explanation
and illustration).

The scalability dimension describes how many and which examples and use cases are known for
a tool. Other aspects of scalability are difficult to evaluate, the size or complexity of the verifiable

21

Formal Verification of Complex Software Systems

software depends very much on the property to be verified and cannot be described in a meaningful
general way. The computational complexity is similar for many tools, since SMT and SAT solvers are
almost always used. For the same reasons, there is no compact representation of the limitations of
atool. Limitations can be seen as the size or complexity of the software to be verified. However, lim-
itations can also be related to the functional scope of a tool, i.e., the number of features supported
by the tool. It is difficult to judge whether a tool that can verify a single property very well should
be considered limited or not. Furthermore, the supported features of the target programming lan-
guage can be considered a limitation of a tool. The various aspects of limitations are discussed in
Section 3.5.

The column “effect” describes whether a class or parameter is preferred or not. This reflects the
choice of the authors. As explained for some classes and parameters, there are sometimes good
reasons for different opinions. Therefore, we do not derive a single maturity score.

On the following pages, each of the tools is presented with a brief description and a table that
assesses the maturity of the tool.

22

Formal Verification of Complex Software Systems

3.4.2.1. Tool-ACL2

ACL2 is a logic and programming language with corresponding tool to model and verify computer
systems. It is developed at the University of Texas and is openly available (https://github.com/
acl2/acl2). Several books, papers as well as tutorials and binaries are available at the website.
ACL2 was used to verify properties of systems by multiple major companies including IBM, Motorola
and AMD. The prover for ACL2 is an interactive theorem prover thus requiring comparatively a lot of
user input to conduct proofs.

description A theorem prover for high-level descriptions of sys-
tems
Info method deductive verification (interactive)
website https://www.cs.utexas.edu/users/moore/acl2/
verifiable properties functional correctness, Bug Finding
current version Version 8.5 (July 2022)
Community communifcy large
commercial support X

Availability

precompiled binaries

supported OS

(OSX, Win, Linux)

up-to-date

standalone

user interface

GUI, Plug-in (Emacs, Eclipse)

open source

Expertise

no custom program-
ming language

(Lisp)

common specification
language

textbook available

comprehensive online
manual

Automation

automation

interactive

Scalability

scalability

industrial use cases

Table 3.4.: Description and maturity evaluation of tool: ACL2

23

https://github.com/acl2/acl2
https://github.com/acl2/acl2

Formal Verification of Complex Software Systems

3.4.2.2. Tool-Agda

Agda is a dependently typed programming language which as such can be used as a proof assistant
to prove mathematical theorems. Itis developed at Chalmers University (Gothenburg, Sweden) and
is available as open source at GitHub (https://github. com/agda/agda). Agda is mainly intended
for Linux and OSX systems. A binary version bundled with Emacs is however downloadable for Win-
dows. Books as well as tutorials and extensive documentation can be found at the website.

description a programming language which also allows writing
proofs
Info method deductive verification
website https://wiki.portal.chalmers.se/agda/
verifiable properties functional correctness
current version 2.6.2.2 (April 2022)
Community communijcy large
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone X
user interface Plug-in (Emacs)
open source
no custom program- | X(Agda)
Expertise ming language e
common specification | X
language
textbook available
comprehensive online
manual
Automation | automation interactive
Scalability || scalability multiple academic examples

Table 3.5.: Description and maturity evaluation of tool: Agda

24

https://github.com/agda/agda
https://wiki.portal.chalmers.se/agda/

Formal Verification of Complex Software Systems

3.4.2.3. Tool - Alloy Analyzer

Alloy is the name of an open source language as well as that of the corresponding analyzer. Closely
related is the model finding tool Kodkod. There are also several other tools and plugins build around
or on top of Alloy and Kodkod. Alloy has been used in various scenarios including finding security
holes and designing telephone switching networks. It is mainly developed at the Software Design
Group at MIT. The source code is hosted publicly at GitHub (https://github.com/AlloyTools).
Additional resources like documentation, list of papers and binaries are available at the website of
the project. With more than 1000 papers written about and using Alloy it has a sizable community.

description Fully automatic tool based on the alloy language
method refinement, deductive verification
Info website https://alloytools.org/
verifiable properties functional correctness, safety
current version Release 6 (November 2021)
Community communiFy large
commercial support X
precompiled binaries
supported 0S (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI
open source
no custom program- | X(Alloy)
Expertise ming language e
common specification
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.6.: Description and maturity evaluation of tool: Alloy Analyzer

25

https://github.com/AlloyTools

Formal Verification of Complex Software Systems

3.4.2.4. Tool - AproVE

AproVE is a tool for reasoning about termination and complexity of programs. Based on term rewrite
systems it also supports several other languages like Java byte-code, C, Haskell and Prolog. AproVE
is not open source. As a Java command line program, it is compatible with all major operating sys-
tem and additionally offers an Eclipse Plugin which allows using it through a GUI. Binaries as well as
publications are available online, documentation as well as a textbook are however missing.

description termination proofs for several languages
method symbolic execution
Info website https://aprove.informatik.rwth-aachen.de/
verifiable properties termination
current version ?? (December 2021)
. community small
Community -
commercial support X
precompiled binaries
supported 0S (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI, Plug-in (Eclipse)
open source X
no custom program- (Java, C, LLVM, Haskell, Prolog, TRS)
Expertise ming language e
common specification
language
textbook available X
comprehensive online | X
manual
Automation || automation fully automated
Scalability || scalability multiple academic examples

Table 3.7.: Description and maturity evaluation of tool: AproVE

26

Formal Verification of Complex Software Systems

3.4.2.5. Tool - Astrée

Astrée is a static code analyzer for C or C++ code that can prove the absence of runtime errors and
invalid concurrent behavior. It targets primarily embedded applications but is not restricted to that.
As an exception to a lot of other tools Astrée offers full support for floating-point computations. It
is a standalone tool with a graphical user interface. Astrée is used by several well known compa-
nies like Airbus, BMW, and Bosch. Astrée is sound but may raise false alarms due to it using an over
approximation in certain cases. It is commercially distributed by Absint with the offer of additional
training and support when purchasing a license.

description Fully automatic static analysis tool for safety proper-
tiesin C
Info method static analysis
website https://www.absint.com/astree/index.htm
verifiable properties safety
current version Release 22.10 (October 2022)
Community communijcy large
commercial support
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI
open source X
no custom program- (C, C++)
Expertise ming language —
common specification
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.8.: Description and maturity evaluation of tool: Astrée

27

Formal Verification of Complex Software Systems

3.4.2.6. Tool - CBMC

CBMC (the C Bounded Model Checker) is a tool for verifying Cand C++ programs. As a bounded model
checker it is not able to provide full proofs in general but rather up to a certain bound (e.g. for loop
iterations and recursion depth). CBMC is able to verify memory safety, absence of exceptions and
checks for user-specified assertions. Binaries and documentation as well as examples are available
on the website. CBMC is open source and available at GitHub (https://github.com/diffblue/
cbmc). The main paper about CBMC [Clarke et al. 2004] is one of the most cited papers found during
our literature research. A variant for Java is available under the name JBMC (see website).

description A bounded model checker for C
method deductive verification

Info website https://www.cprover.org/cbmc/
verifiable properties bug finding, lightweight properties
current version Version 5.67 (September 2022)

. community medium

Community -
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)

o pers up-to-date

Availability <tandalone
user interface CLI, Plug-in (Eclipse)
open source
no custom program- (C, Java)

Expertise ming language —
common specification
language
textbook available
comprehensive online
manual

Automation || automation fully automated

Scalability || scalability industrial use cases

Table 3.9.: Description and maturity evaluation of tool: CBMC

28

https://github.com/diffblue/cbmc
https://github.com/diffblue/cbmc

Formal Verification of Complex Software Systems

3.4.2.7. Tool-Coq

Coq is a platform that provides a formal language for writing mathematical proofs, as well as the
means to machine check those proofs. Writing proofs in Coq involves a considerable amount of
manual work, but the expressiveness of the Coq language is very high, allowing proofs of a very
wide range of properties. Coq has been used to verify the C compiler CompCert [Leroy et al. 2016].
Development of Coq is open on GitHub (https://github.com/coq/coq), and with over 200 con-
tributors, Coq has one of the most established communities in the list of tools considered. Coq is
available for all major platforms. Several books about Coq as well as documentation can be found
on the website.

description theorem prover with the ability to be applied to pro-
gramming languages

Info method proof assistant
website https://coq.inria.fr/
verifiable properties functional correctness, safety, security, refinement
current version Release 8.16.0 (September 2022)

Community communijcy large
commercial support X
precompiled binaries
supported 0S (OSX, Win, Linux)

- up-to-date

Availability <tandalone

user interface GUI, Plug-in (VSCode, Emacs, Vim)

open source
no custom program- | X(Coq)
ming language
common specification
language

textbook available
comprehensive online
manual

Automation || automation interactive
Scalability || scalability industrial use cases

Expertise

Table 3.10.: Description and maturity evaluation of tool: Coq

29

https://github.com/coq/coq

Formal Verification of Complex Software Systems

3.4.2.8. Tool - CPAChecker

CPAchecker is a fully automatic configurable verification tool for C. It is openly available at the web-
site. CPAchecker is running on all major operating systems. It achieved several medals over the last
years in the SV-Competition series. Rudimentary documentation as well as the main papers about
the tool are available at the website. In addition to the program itself and the specification, a con-
figuration is required to run the tool, which describes the kind of analysis that is to run on the given

program.

description configurable fully automatic checker for
method model checking

Info website https://cpachecker.sosy-lab.org/
verifiable properties safety, functional correctness
current version 2.2 (Nov 2022)

. community medium

Community -
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)

- up-to-date

Availability <tandalone
user interface CLI
open source
no custom program- Q)

Expertise ming language —
common specification | X
language
textbook available X
comprehensive online | X
manual

Automation || automation fully automated

Scalability || scalability industrial use cases

Table 3.11.: Description and maturity evaluation of tool: CPAChecker

30

Formal Verification of Complex Software Systems

3.4.2.9. Tool - Dafny

Dafny is a language (and the corresponding verification tool) which was developed with formal veri-
fication in mind. It allows writing specifications in the code as a standard feature of the language
and incorporates typical features for verification like quantifiers or lemmas. Any Dafny program
can always be transpiled to several standard languages including C#, Java and JavaScript. Verifi-
cation in Dafny is done fully automatically using the SMT solver Z3 with Boogie as an intermedi-
ate language. Dafny is distributed under the MIT license and openly available at GitHub (https:
//github.com/dafny-lang/dafny).

description Language and automatic verifier for custom language
Dafny (can be refined to C)
Info method deductive verification
website https://dafny.org/
verifiable properties functional correctness, bug finding
current version 3.9.1(10.2022)
Community communijcy large
commercial support X

Availability

precompiled binaries

supported OS

(OSX, Win, Linux)

up-to-date

standalone

user interface

CLI, Plug-in (VSCode, Emacs)

open source

Expertise

no custom program-
ming language

X(Dafny)

common specification
language

textbook available

comprehensive online
manual

Automation

automation

autoactive

Scalability

scalability

small academic examples

Table 3.12.: Description and maturity evaluation of tool: Dafny

31

https://github.com/dafny-lang/dafny
https://github.com/dafny-lang/dafny

Formal Verification of Complex Software Systems

3.4.2.10. Tool - Event-B

Event-B is a formal method based on set theory and refinement to model and analyze at system-
level. The basicidea is to provide a very coarse grained abstraction of the desired system and prove
properties of it and then refining it down to a suitable level of abstraction (possibly even down to a
full implementation). An Eclipse-based IDE for Event-B is available under the name Rodin. Event-B
has been used by several major companies including Bosch, Siemens and SAP. Documentation as
well as binaries are available via the website. The source code is openly available on SourceForge
(https://sourceforge.net/p/rodin-b-sharp/svn/HEAD/tree/).

description Set theory based refinement tool
method deductive verification, refinement
Info website http://www.event-b.org/index.html
verifiable properties refinement
current version 3.7 (25.5.2022)
Community communijcy large
commercial support X
precompiled binaries
supported 0S (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI, Plug-in (Eclipse)
open source
no custom program- | X(Event-B)
Expertise ming language T
common specification
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.13.: Description and maturity evaluation of tool: Event-B

32

https://sourceforge.net/p/rodin-b-sharp/svn/HEAD/tree/

Formal Verification of Complex Software Systems

3.4.2.11. Tool - F*

F* is a functional programming language designed with the intent to ease verification. Programs
written in F* can be transpiled to other well established language including OCaml, F# and C. Amain
goal of the F* language is to build a fully verified HTTPS stack. F* is openly developed on GitHub
(https://github.com/FStarLang/FStar). With over 100 contributors, F* is one of the tools with
the largest active developing communities. Precompiled binaries are available for Windows and
Linux on the website. Additionally, the website offers a list of tutorials as well as publications and
documentation.

description a language designed for formal verification with corre-
sponding tools which can be compiled to several stan-
Info dard languages
method deductive verification
website https://www.fstar-lang.org/
verifiable properties functional correctness
current version 2022.01.15 (Jan 2022)
Community communijcy large
commercial support X
precompiled binaries
supported 0S X (Win, Linux)
- up-to-date
Availability <tandalone
user interface CLI, Plug-in (Emacs, VS-Code)

open source
no custom program- | X(F*)
ming language
common specification
language

textbook available
comprehensive online
manual

Automation || automation autoactive
Scalability || scalability industrial use cases

Expertise

Table 3.14.: Description and maturity evaluation of tool: F*

33

https://github.com/FStarLang/FStar

Formal Verification of Complex Software Systems

3.4.2.12. Tool-FramaC

Frama-C is rather a framework of analysis plugins than a single tool. All of those plugins are con-
cerned with the formal correctness of C programs but use different techniques and approaches
which range from deductive verification over runtime verification to test-case generation. Frama-C
is backed by a substantial community which has been built over several years of active development
and use. An extensive list of publications as well as manuals and tutorials can be found on the web-
site. Frama-C is open source but no public repository is available. Binaries for Linux and Mac can be
downloaded from the website however Windows is currently only supported via the Windows Sub-
system for Linux (WSL). A commercial version of Frama-C, called TrustinSoft Analyzer, is available.

description Framework for the analysis of C programs
method deductive verification (batch)
Info website https://frama-c.com/
verifiable properties functional correctness, bug finding
current version 26 (2022)
Community communijcy large
commercial support X
precompiled binaries
supported OS 0SX, Win (WSL only), Linux
o pers up-to-date
Availability <tandalone
user interface CLI
open source
no custom program- (Q)
Expertise ming language ——
common specification
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.15.: Description and maturity evaluation of tool: Frama C

34

Formal Verification of Complex Software Systems

3.4.2.13. Tool - HOL4

HOL4 is an interactive theorem prover for higher order logic that is mainly developed at Cambrige
University (UK) and the Chalmers University (Sweden). It is openly available at Github (https://
github. com/HOL-Theorem-Prover/HOL). Precompiled binaries are not available so the user has
to build from sources and some configuration is needed. However good tutorial material together
with an extensive documentation and examples is available at the tool website. Windows is only
supported via CygWin or Linux subsystem for Windows. “HOL is particularly suitable as a platform
for implementing combinations of deduction, execution and property checking” (HOL4 website).

description an interactive theorem prover for higher order logic
method proof assistant (interactive)
Info website https://hol-theorem-prover.org/
verifiable properties functional correctness
current version Kananaskis-14 (February 2021)
Community communiFy large
commercial support X
precompiled binaries X
supported 0S X (Linux, OSX)
o pers up-to-date
Availability <tandalone
user interface CLI/Plugin(Emacs)
open source
no custom program- | X(ML)
. ming language
Expertise common specification | X(ML)
language
textbook available
comprehensive online
manual
Automation || automation interactive
Scalability || scalability multiple academic examples

Table 3.16.: Description and maturity evaluation of tool: Hol4

35

https://github.com/HOL-Theorem-Prover/HOL
https://github.com/HOL-Theorem-Prover/HOL

Formal Verification of Complex Software Systems

3.4.2.14. Tool - Isabelle

Isabelle is a proof assistant which is nowadays most famous in its version as Isabelle/HOL which is a
theorem prover for higher-order logic. Although proving in Isabelle naively requires a lot of manual
work (writing out the proof) several internal tools allow for a moderate automation of proofs. Ad-
ditionally, Isabelle allows turning executable specifications into code in 0Caml, Haskell, and Scala.
Furthermore, Isabelle comes with a large archive of formal proofs which allows to directly apply al-
ready proven theorems to ones own proofs. Isabelle is available for all major operating systems as
well as a Dockerimage. Documentation can be found at the website. Source code is openly available

athttps://isabelle-dev.sketis.net/source/isabelle/.

description Proof assistant for mathematical formulas
method proof assistant
Info website https://isabelle.in.tum.de/
verifiable properties functional correctness, safety, security, refinement
current version Isabelle2022 (10.2022)
Community communijcy large
commercial support X

Availability

precompiled binaries

supported OS

(OSX, Win, Linux)

up-to-date

standalone

user interface

GUI

open source

Expertise

no custom program-
ming language

X(HOL)

common specification
language

textbook available

comprehensive online
manual

Automation

automation

interactive

Scalability

scalability

industrial use cases

Table 3.17.: Description and maturity evaluation of tool: Isabelle

36

https://isabelle-dev.sketis.net/source/isabelle/

Formal Verification of Complex Software Systems

3.4.2.15. Tool - KeY System

KeY [Ahrendt et al. 2016] is an interactive deductive verification tool for Java using JML for specifica-
tions. It has a medium-sized community primarily backed by TU Darmstadt and the Karlsruhe Insti-
tute of Technology. The KeY tool has a long history and is available as open source along with full de-
velopment process insights®. An extensive overview of publications can be found at the project web-
site*. KeY is a platform-independent standalone tool with binaries available at the website*. It pro-
vides a GUI as well as Eclipse integration. KeY supports verification of Java (particularly Java Card)
based on JML specifications. Some verification properties require a JML dialect. The KeY community
provides a standard textbook [Ahrendt et al. 2016] and online documentation®. Applications of KeY
comprise several scientific examples, e.g., sorting algorithms of the Java Standard Library [Beck-
ert et al. 2017] or parts of an electronic voting software (http://urn.nb.no/URN:NBN:no-82770).
There are no industry-oriented applications recorded. For Automation KeY supports some sophis-
ticated functionalities. Limitations in terms of programming language features are limited floating-
point arithmetic for Java Card and no support for, e.g., generics or lambdas. Table 3.18 shows a
summary of the maturity evaluation of KeY.

description Interactive verification tool for Java with JML specifi-
cations
Info method deductive verification
website https://www.key-project.org/
verifiable properties functional correctness, bug finding (test case genera-
tion)
current version 2.10(12.2021)
. community medium
Community -
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI
open source
no custom program- (Java)
Expertise ming language ——
common specification
language
textbook available
comprehensive online
manual
Automation || automation interactive
Scalability || scalability multiple academic examples

Table 3.18.: Description and maturity evaluation of tool: Key System

3KeY git repository: https://git.key-project.org/key-public/key
“KeY project website: https://www.key-project.org/

37

http://urn.nb.no/URN:NBN:no-82770
https://git.key-project.org/key-public/key
https://www.key-project.org/

Formal Verification of Complex Software Systems

3.4.2.16. Tool - KIV

The KIV system is a tool for development and interactive verification of software developed at the
University of Augsburg. KIV is mainly intended to use as a plugin for Eclipse and requires the in-
stallation of Eclipse. As a reasoning tool, KIV relies on Kodkod. KIV was used in several industrial
pilot studies which can be found at the website. Additionally, KIV teams regularly participated in
VerifyThis competitions. KIV is free for non-commercial use but not open source.

description interactive verification of abstract models with refine-
ment capabilities
Info method deductive verification (interactive)
website https://kiv.isse.de/
verifiable properties functional correctness, bug finding, security, refine-
ment
current version 8.1(10/14/2022)
. community medium
Community -
commercial support X

Availability

precompiled binaries

supported OS (OSX, Win, Linux)
up-to-date

standalone X

user interface Plug-in (Eclipse)
open source X

Expertise

no custom program-
ming language

(Abstract System Description)

common specification
language

textbook available

comprehensive online
manual

Automation

automation

interactive

Scalability

scalability

industrial use cases

Table 3.19.: Description and maturity evaluation of tool: KIV

38

https://kiv.isse.de/

Formal Verification of Complex Software Systems

3.4.2.17. Tool-Lean

LEAN is a functional programming language which is aimed at easily writing correct code. Addition-
ally, LEAN can be used as an interactive theorem prover. It is developed by Microsoft Research and
is openly available at GitHub (https://github.com/leanprover/leand/). LEAN can be set up on
all major operating systems and supports integration into several common editors. Extensive docu-
mentation as well as a list of papers about LEAN and papers using LEAN can be found on the website.
LEAN comes with a library of mathematical proofs called mathlib.

description extensible interactive Theorem prover
method deductive verification
Info website https://leanprover.github.io/
verifiable properties functional correctness
current version 4.0.0 (Aug 2022)
Community communijcy large
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface -
open source
no custom program- | X(LEAN)
Expertise ming language —
common specification
language
textbook available
comprehensive online
manual
Automation || automation interactive
Scalability || scalability multiple academic examples

Table 3.20.: Description and maturity evaluation of tool: Lean

39

https://github.com/leanprover/lean4/

Formal Verification of Complex Software Systems

3.4.2.18. Tool- mCRL2

mCRL2 is a language with a corresponding tool for verification of concurrent systems and protocols.
It is available for all major operating systems. Source code as well as online documentation and a
list of publications can be found at the website. Several major academic use cases are also available
online.

description language and toolset for verification of concurrent sys-
tems and protocols
Info method model checking
website https://www.mcrl2.org/
verifiable properties functional correctness
current version 202206.1 (June 2022)
. community medium
Community -
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI
open source
no custom program- (labeled transition systems)
Expertise ming language ——
common specification | X
language
textbook available X
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.21.: Description and maturity evaluation of tool: mCRL2

40

https://www.mcrl2.org/

Formal Verification of Complex Software Systems

3.4.2.19. Tool - Microsoft Windows Static Driver Verifier

The Microsoft Static Driver Verifier is a static analysis tool based on symbolic execution and a fixed
set of properties which is able to verify that this set of properties is respected by a driver. Microsoft
requires official drivers to be checked by this tool. As it is specialized on Windows drivers it is not
available for other platforms. It is currently not open sourced, but documentation is available at the

website. Additionally, an integration into Visual Studio is provided.

description Verification of Windows drivers
method symbolic execution
Info website https://learn.microsoft.com/en-us/windows-
hardware/drivers/devtest/static-driver-verifier
verifiable properties safety, reachability
current version 4.0.2204.1 (Aug 2022)
Community communijcy large
commercial support
precompiled binaries
supported OS X (Win)
- up-to-date
Availability <tandalone
user interface VS Integration, MS Build
open source
no custom program- (C, C++)
Expertise ming language —
common specification
language
textbook available X
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.22.: Description and maturity evaluation of tool: Static Driver Verifier

41

Formal Verification of Complex Software Systems

3.4.2.20. Tool - Nagini

Nagini is a fully automatic verification tool for statically typed Python based on the Viper framework.
Itis developed as an open source project on GitHub (https://github.com/marcoeilers/nagini)
by the ETH Zurich. As a python tool it is compatible with all major operating systems. Rudimentary
documentation as well as the main paper describing Nagini can be found on the website.

description functional correctness of typed Python based on Viper
framework
Info method verification condition generation, symbolic execution
website https://github.com/marcoeilers/nagini
verifiable properties functional correctness
current version 0.9 (May 2021)
. community small
Community -
commercial support X
precompiled binaries X
supported 0S (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI, Plug-In (PyCharm)
open source
no custom program- (Python)
Expertise ming language e
common specification
language
textbook available X
comprehensive online
manual
Automation || automation autoactive
Scalability || scalability small academic examples

Table 3.23.: Description and maturity evaluation of tool: Nagini

42

https://github.com/marcoeilers/nagini

Formal Verification of Complex Software Systems

3.4.2.21. Tool - nuXmv

nuXmv is a model checker which is the successor of NuSMV. It relies on SAT/SMT-solvers as backends
for reasoning about finite- as well as infinite-state systems. The main solver used in nuXmv is Math-
SATS. Itis free for non-commercial or academic purposes but is not open source. Binaries as well as
documentation can be found at the website.

description symbolic model checker for the analysis of syn-
chronous systems
Info method model checking
website https://nuxmv.fbk.eu/
verifiable properties safety
current version 2.0(14.10.2019)
. community medium
Community -
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI
open source X
no custom program- | X(NuSMV language)
Expertise ming language ——
common specification | X
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.24.: Description and maturity evaluation of tool: NuXMV

43

Formal Verification of Complex Software Systems

3.4.2.22. Tool - OpenJML

OpenJML is a fully automatic verification tool for Java programs annotated with JML specifications.
It is the successor of ESC/Java2. It was recently updated to support Java 17. Based on a deductive
verification approach, JML uses SMT solvers as backend to discharge verification conditions. An
eclipse integration is provided, but has not yet been adapted for the latest Java versions. A mode
to automatically create runtime assertions from JML contracts is also available. The source code is
openly available at GitHub. With four contributors listed on the GitHub repository, OpenJML is one
of the tools with a rather small community. It is however actively developed and maintained. As a

Java application, OpenJML runs on any major operating system.

description Fully automatic prover for Java specified by JML
method deductive verification, runtime verification
Info website https://www.openjml.org/
verifiable properties functional correctness, safety
current version 0.17.alpha 6.6.2022
Community communijcy small
commercial support X
precompiled binaries
supported OS X(OSX, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI, Plug-in (Eclipse)
open source
no custom program- (Java)
Expertise ming language —
common specification
language
textbook available
comprehensive online
manual
Automation || automation autoactive
Scalability || scalability small academic examples

Table 3.25.: Description and maturity evaluation of tool: OpenJML

44

Formal Verification of Complex Software Systems

3.4.2.23. Tool - PVS

PVSis a platform which contains a language for specification as well as an interactive theorem prover
and a symbolic model checker for verification. Itis available for Mac as well as Linux but offers no na-
tive support for Windows. Sources are openly available at GitHub (https://github. com/SRI-CSL/
PVS). PVSis extensively used and supported by NASA which also added a collection of formal proofs
and theorems to the platform. Documentation and a textbook explaining the language and all of the
contained verification tools is available at the website.

description interactive verification tool based on custom language
for high level description of complex systems
Info method proof assistant
website https://pvs.csl.sri.com/
verifiable properties functional correctness, safety, security, refinement
current version 7.1(2020)
. community medium
Community -
commercial support X

Availability

precompiled binaries

supported 0S

X (0OSX, Linux)

up-to-date

standalone

user interface

CLI, Plug-in (VSCode)

open source

Expertise

no custom program-
ming language

X(PVS)

common specification
language

X

textbook available

comprehensive online
manual

Automation

automation

interactive

Scalability

scalability

industrial use cases

Table 3.26.: Description and maturity evaluation of tool: PVS

45

https://github.com/SRI-CSL/PVS
https://github.com/SRI-CSL/PVS

Formal Verification of Complex Software Systems

3.4.2.24. Tool - SeaHorn

SeaHorn is an open-source tool for the analysis of LLVM-based languages. The source code is avail-
able on GitHub (https://github. com/seahorn/seahorn). The analysis is based on the transfor-
mation of the underlying problem into horn clauses and applying a suitable solver to it. SeaHorn
specializes in checking for termination as well as finding dead code. It is available as docker image
and as such compatible with all major operating systems. Publications are listed online however a
textbook and extensive documentation is missing.

description A fully automated analysis framework for LLVM-based
languages

Info method model checking, abstract interpretation
website https://seahorn.github.io/
verifiable properties termination, reachability
current version 10 (nightlies, no official release)

. community medium

Community -
commercial support X
precompiled binaries X
supported 0S (OSX, Win, Linux)

o pers up-to-date

Availability <tandalone
user interface CLI
open source
no custom program- (LLVM, C)

Expertise ming language e
common specification
language
textbook available X
comprehensive online | X
manual

Automation || automation fully automated

Scalability || scalability small academic examples

Table 3.27.: Description and maturity evaluation of tool: SeaHorn

46

https://github.com/seahorn/seahorn

Formal Verification of Complex Software Systems

3.4.2.25. Tool - SMACK

SMACK is a model checker and verification toolchain for the LLVM intermediate language. It al-
lows verification of all languages that can be compiled to LLVM, including C and C++. Internally,
SMACK translates the given assertions into Boogie (see Section 3.2.2) and thus allows the execu-
tion of all reasoning tools that can handle Boogie. SMACK is natively supported for Unix-based op-
erating systems only and does not provide precompiled binaries, but does provide a Docker im-
age. A list of publications and demos can be found on the website, but extensive documentation
and a full textbook are missing. SMACK is open source and openly developed on GitHub (https:
//github.com/smackers/smack).

description SMACK is both a modular software verification
toolchain and a self-contained software verifier
Info method model checking
website http://smackers.github.io/
verifiable properties functional correctness
current version 2.8.0 (Oct 2021)
. community medium
Community -
commercial support X
precompiled binaries X
supported OS X (Linux, OSX)
o pers up-to-date
Availability <tandalone
user interface CLI
open source
no custom program- (LLVM)
Expertise ming language —
common specification
language
textbook available X
comprehensive online | X
manual
Automation || automation fully automated
Scalability || scalability small academic examples

Table 3.28.: Description and maturity evaluation of tool: SMACK

47

https://github.com/smackers/smack
https://github.com/smackers/smack

Formal Verification of Complex Software Systems

3.4.2.26. Tool - Software Analysis Workbench SAW

SAW is a scripting language for proofs with a suitable prover. The reasoning backend used is Z3
and SAW can thus be used as a fully automatic prover. Due to the nature of being a scripting lan-
guage it also allows for manual proof scripting for more complex properties. SAW is developed by
the company Galois butis open source and available at GitHub (https://github.com/GaloisInc/
saw-script). It has been used in several commercial applications, mainly for the verification of
cryptographic protocols. Accepted input languages include Java and LLVM. A scientific publication
introducing the tool is available at the website. Extensive documentation is available at the GitHub

project website.

Info

description

a verification tool based on dependent type theory

method

symbolic execution

website

https://saw.galois.com

verifiable properties

functional correctness

current version

0.9 (Oct 2021)

Community

community

large

commercial support

Availability

precompiled binaries

supported OS

(OSX, Win, Linux)

up-to-date

standalone

user interface

CLI

open source

Expertise

no custom program-
ming language

(C, Java, Cryptol)

common specification
language

textbook available

comprehensive online
manual

Automation

automation

fully automated

Scalability

scalability

industrial use cases

Table 3.29.: Description and maturity evaluation of tool: SA Workbench

48

https://github.com/GaloisInc/saw-script
https://github.com/GaloisInc/saw-script

Formal Verification of Complex Software Systems

3.4.2.27. Tool - Spark ADA

SPARK is a commercially available platform which offers the Ada-based SPARK programming lan-
guage and suitable verification tools for it. Language features can be disabled to increase the ease
of verification and Spark is combinable with Ada and C code. Relying on the GNAT verification suite
SPARK provides formal static verification to prove the absence of runtime exceptions as well as full
functional correctness.

description platform with language, verification tool and design
method to construct secure and safe software
Info method symbolic execution, static analysis
website https://www.adacore.com/about-spark
verifiable properties functional correctness
current version Community 2021 (Juni 2021)
Community communijcy large
commercial support
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI
open source X
no custom program- | X(Ada)
Expertise ming language e
common specification | X
language
textbook available
comprehensive online
manual
Automation || automation autoactive
Scalability || scalability industrial use cases

Table 3.30.: Description and maturity evaluation of tool: Spark ADA

49

Formal Verification of Complex Software Systems

3.4.2.28. Tool-SPIN

Spin is a model checker specialized in the verification of multithreaded software as described in a
specification language called Promela. It is open-source software and is included in Linux Debian
distributions as well es Ubuntu since version 16.10. Several case studies including safety critical
software for space missions were conducted with Spin. Documentation, publications, and tutorials

are available at the website.

description model checker explicitly for multithreaded software
method model checking
Info website https://spinroot.com/
verifiable properties safety
current version 6.5.1 (July 2020)
Community communijcy large
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface CLI
open source
no custom program- | X(Promela, extraction from C possible)
Expertise ming language ——
common specification | X
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.31.: Description and maturity evaluation of tool: SPIN

50

https://spinroot.com/

Formal Verification of Complex Software Systems

3.4.2.29. Tool - TLA+

TLA+ is a high-level modeling language for systems and specialized in concurrent and distributed
systems in particular. It also offers a suite of tools to verify the specified systems including a model
checker. TLA+ has been used by several major tech companies including Amazon, Microsoft, and In-
tel. Itis openly developed on GitHub (https://github.com/tlaplus/tlaplus/). Extensive docu-
mentation, tutorials, and publications as well as binaries can be found on the website.

description language for modeling concurrent and distributed sys-
tems with several tools
Info method model checking
website https://lamport.azurewebsites.net/tla/tla.html
verifiable properties functional correctness
current version 1.7.2 (Feb 2022)
Community communijcy large
commercial support X
precompiled binaries
supported OS (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI, Plug-in (VSCode)
open source
no custom program- (State machines)
Expertise ming language —
common specification
language
textbook available
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.32.: Description and maturity evaluation of tool: TLA+

51

https://github.com/tlaplus/tlaplus/

Formal Verification of Complex Software Systems

3.4.2.30. Tool - UPPAAL

UPPAAL is an integrated tool environment allowing for the modeling and verification of real-time
systems based on timed automata. It is developed jointly at the university of Uppsala as well as the
university of Aalborg. UPPAAL is free for non-commercial use but is not open source. The tool offers
an elaborate GUI in which the user can model systems graphically and verify them. It is available for
all major operating systems.

description verification of real-time systems based on timed au-
tomata
Info method model checking
website https://uppaal.org/
verifiable properties safety, liveness properties of temporal automata
current version 4.015(11.2019), dev version 4.1.26-2(5.10.2022)
Community communijcy large
commercial support
precompiled binaries
supported OS (OSX, Win, Linux)
- up-to-date
Availability <tandalone
user interface GUI
open source X
no custom program- | X(custom timed automata)
Expertise ming language —
common specification | X
language
textbook available X
comprehensive online
manual
Automation || automation fully automated
Scalability || scalability industrial use cases

Table 3.33.: Description and maturity evaluation of tool: UPPAAL

52

Formal Verification of Complex Software Systems

3.4.2.31. Tool - VeriFast

VeriFast is an open-source tool developed at the University of Leuven. It is available for all major
operating systems. Based on separation logic, VeriFast is able to show correctness properties of
singlethreaded and multithreaded C as well as Java programs. The fully automatic reasoningis done
using an SMT solver. Rudimentary documentation as well as the main publications concerning the
tool are available at the GitHub page.

description separation logic based tool for Java and C programs
method deductive verification (batch)
Info website https://github.com/verifast/verifast
verifiable properties functional correctness
current version Nightly - Jan 22 (offiziell 21.04)
. community medium
Community -
commercial support X
precompiled binaries
supported 0S (OSX, Win, Linux)
o pers up-to-date
Availability <tandalone
user interface GUI
open source
no custom program- (Java, C)
Expertise ming language e
common specification
language
textbook available
comprehensive online | X
manual
Automation || automation autoactive
Scalability || scalability multiple academic examples

Table 3.34.: Description and maturity evaluation of tool: VeriFast

53

Formal Verification of Complex Software Systems

3.4.3. Language Support

There are two different ways of looking at programming languages. Is a language good for verifica-
tion? Is a language widely used in industrial applications? Strongly typed languages with limited
type conversions, such as Java or C#, are much easier to reason about and it is easier to prove prop-
erties of programs written in these languages. Functional languages have no side effects and show
advantages when reasoning about concurrency. However, languages with hard-to-control type con-
versions, such as C/C++, are widely used in industry and are much harder to reason about.

There are also languages such as C# or Rust with support for marking safe and unsafe regions of
code. With this separation, the hard-to-verify unsafe sections of code tend to be small. C#is typically
used for application development, so unsafe code regions are rarely used. In contrast, Rust is used
for both application and system development, so unsafe code regions are used more frequently.

3.4.3.1. Java

Java is a programming language that is still used in many financial and enterprise systems. Java is
typically compiled into portable JVM bytecode. Along with the other JVM-based languages such as
Kotlin or Scala, it is also used to develop applications for the Android ecosystem used in phones,
TVs, and cars. Several formal verification tools are available for Java and JVM-based languages, in-
cluding CRUX, Java Path Finder (JPF), JBMC, JDart, Jimple, Krakatoa, Why, KeY, Isabelle/HOL, Jinja,
OpenJML, and Software Analysis Workbench (SAW).

EEES

Model Checking
JVM

@r@
s

Figure 3.1.: Overview on common verification tools for Java

Figure 3.1 shows that most tools rely on the precompiled Java bytecode. Moreover, a strong us-
age of the JML specification language is shown (circles denote tools and squares represent used
languages or specifications).

54

Formal Verification of Complex Software Systems

3.4.3.2. Functional Languages

Functional languages such as Erlang, Haskell, OCaml, or ReasonML usually have good support for
formal verification, since pure functions have no side effects and are usually supported by a strong
type system. The Coq prover is a common choice for verifying programs written in a functional lan-
guage, and it is possible to generate Haskell and OCaml code from Coq as part of the verification
process. However, industry adoption of functional languages is low. Currently, ReasonML, which is
tightly coupled to Facebook’s React framework, seems to be attracting developers (see Section 4.1.3
on JavaScript as an application example for details).

3.4.3.3. C/C++

While C and its object-oriented counterpart C++ are both programming languages that are often con-
sidered to not be modern languages, they are still very important®. Especially in the area of embed-
ded and operating system software, both languages are used. Several standards, such as MISRA-C
and MISRA-C++, have been established and are used to develop safety-critical systems ranging from
defense and aerospace to telecommunications and medical devices. Therefore, it is obvious that
formal verification is a topic of high relevance and numerous tools have been developed, includ-
ing Astrée, PolySpace, CPAchecker, CBMC, Frama-C, SMACK, Corral, Software Analysis Workbench
(SAW), SeaHorn, KLEE/Kleaver, Isabelle/HOL, and C-SIMPL.

C/C++ Code

Model Checking

Abstract Interpretation

CPAchecker
C-SIMPL

PolySpace

CRAB

CRAB-IR

LLVM-IR

Figure 3.2.: Overview on common verification tools for C/C++

Figure 3.2 shows the dependencies for some C/C++ verification toolchains (circles represent tools
and squares represent languages or intermediate representations). Many tools are based on the
LLVM framework, which facilitates the development of language frontends for C/C++ and other LLVM-
supported languages. The planned introduction of contracts for C++ in the upcoming C++23 stan-

*Also reflected by their rankings in the TIOBE Index 2022: https://www.tiobe.com/tiobe-index/

55

https://www.tiobe.com/tiobe-index/

Formal Verification of Complex Software Systems

dard may further increase the adoption of formal verification among C++ developers, as it standard-
izes the specification of pre- and post-conditions.

3.4.3.4. Rust

Rust is a relative new language that has gained large attention by the formal verification commu-
nity due to its ownership-based type system and useful guarantees about Rust programs that sim-
plify reasoning [Astrauskas et al. 2019]. Moreover, Rust has been recently allowed to be included in
the Linux kernel as alternative to the traditional C. Rust uses a Mid-level Intermediate Representa-
tion (MIR) that is then converted to LLVM-IR for compilation. Thus, many LLVM-based verification
tools could be easily adapted to support Rust as well, as shown in Figure 3.3 (circles denote tools
and squares represent languages or intermediate representations). Based on Rust, currently an
ISO 26262 compliant toolchain is being developed called Ferrocene®. Verification tool support for
Rust includes: KLEE, SMACK, SeaHorn, Crux-MIR, Prusti / Viper, and MIRAL.

MIR

M-IR Abstract Interpretation

Figure 3.3.: Overview on common Rust verification tools

3.5. General Limitations

Although a variety of mature software verification tools exist, there is no silver bullet for general
software verification. All tools have drawbacks and limitations. In this section, we discuss the most
relevant classes of limitations that apply to software verification tools, distinguishing between three
different categories of limitations: those related to the target language, those related to the verifi-
able properties, and those related to the underlying verification method of the tool.

®Ferrocene: https://ferrous-systems.com/ferrocene/

56

https://ferrous-systems.com/ferrocene/

Formal Verification of Complex Software Systems

3.5.1. Programming Languages Features

Most tools do not support verification of arbitrary languages, but rather focus on verifying programs
written in a particular language (or set of languages). Furthermore, for real-world programming
languages such as Java, C, or C++, most tools do not support all features of the language, but rather
a subset. For Java, a commonly used subset is to support the JavaCard standard, as the KeY system
does [Ahrendt et al. 2016]. This problem becomes even more apparent when considering de-facto-
standard libraries, e.g., for handling strings. Such libraries are theoretically not an essential part of
the language, but reasoning about real-world programs without support for such libraries is almost
useless. For that reason, many tools provide built-in support for such libraries. Taken together, the
language itself and the language features supported (or rather not supported) by a tool describe a
class of limitations typical of software verification.

Concurrency A challenging topic for OS verification in particular is concurrency - parallel exe-
cution with shared memory. Few tools can handle the concurrency features of programming lan-
guages. Mature tools such as the static analyzer Astrée or the model checker TLA+ support the ver-
ification of concurrent software; however, reasoning about concurrent software does not scale well
(see discussion of scalability dimensions in Section 4.2).

The no longer maintained deductive verification tool VCC [Cohen et al. 2009] developed by Mi-
crosoft has been used to verify (parts of) the Hyper-V hypervisor for Windows. So far, only the Cer-
tiKOS project” within the DARPA HACMS program [Fisher et al. 2017] demonstrated how to build a
verified concurrent OS kernel (named mC2) written in C and assembly code [Gu et al. 2019]. Cer-
tiKOS uses system layers which are independently verified using Coq and enables proving informa-
tion flow properties for software consisting of C and assembly code [Costanzo et al. 2016]. Lorch et
al. [Lorch et al. 2020] demonstrated with their Armada language and tool how to generate verified
high performance concurrent C code using refinement and the Dafny verification tool/language (see
also Section 3.1.3).

The VerCors framework uses a JML-style specification language for Java, C, OpenCL, and OpenMP
and translates to the Viper intermediate language before proving. The focus of VerCorsis on applica-
tion and not OS level, see [Monti et al. 2022] for an industrial use case. Verifying distributed systems
- parallel execution without shared memory - is discussed in Section 4.1.2.

Embedding and Mixing Languages When different programming languages are embedded or
mixed, as is often done with assembler within C code, there are several ways to handle this: (1) both
languages are translated into a common abstraction [Costanzo et al. 2016], (2) one of the languages
is translated into the other [Recoules et al. 2019], and (3) two different tools are used to verify the
languages separately, assembling the results.

3.5.2. Verifiable Properties

To be verifiable, a property of a program must be expressible in some kind of formal language. This
language is typically called the specification language. The specification language(s) supported by
a tool thus directly limits the properties that can be verified by that tool. If the specification lan-
guage supported by a tool is based on propositional logic, then first-order logical properties are not

CertiKOS project: https://flint.cs.yale.edu/certikos/index.html

57

https://flint.cs.yale.edu/certikos/index.html

Formal Verification of Complex Software Systems

expressible in that language, and thus cannot be reasoned about and verified. This is the second
class of limitations of verification tools: The properties that can be reasoned about by the tool.

3.5.3. Limitations regarding the Underlying Method

The last class of limitations are those regarding the underlying methodology of a tool. Consider as
an example a bounded model checker like CBMC. A bounded model checker inherently is unable to
prove statements about programs with unbounded loops. So the choice of the underlying method
is a direct limitation to what a tool based on that method is able to verify.

3.5.4. Tradeoff Between Limitations

It is important to consider that tool limitations are often willingly accepted in order to gain an ad-
vantage elsewhere. In many cases, accepting limitations, regardless of their class, enables further
automation capabilities. This is the reason why tools that support verification of arbitrary proper-
ties for arbitrary languages are very rare, as they usually have to pay for this generality with a severe
loss of automation. Conversely, it is very common to sacrifice the generality of an approach in order
to provide a fully automated tool. See Figure 3.4 for anillustration of this relationship.

A
Functional y

’
correctness ’

[Deductive verification]

’
’
2

[Abstract interpretation]

’
rd

[Model checking J

4
’
s

[Symbolic execution]

7

Type .

’
safety Pad

N
>

Fully automated High manual effort

Figure 3.4.: Relation between the degree of automation and the complexity of verified properties
(adapted from [Fisher et al. 2017]).

3.6. Conclusion
Our research on the state of the art of software verification tools reveals numerous mature meth-

ods, tools, and communities - many of them driven by academic stakeholders. Comparing this sit-
uation with closely related areas of software engineering tooling, such as testing or automated bug

58

Formal Verification of Complex Software Systems

finding, we can conclude that there has not yet been widespread adoption by industrial soft-
ware developers. For both testing and bug finding, we have seen inflection points where demand
from industrial developers led to a rapid increase in the attractiveness of a few tools (JUnit for test-
ing, or FindBugs and PMD for automated bug finding). This focus on a few tools enabled multiplier
effects through a huge increase in media coverage and availability of training materials and services.
And, thus, a rapidly accelerating adoption of testing and automated bug finding by industrial users.
After the phase of focusing on a few tools, we have seen a more differentiated tool landscape with
the entry of commercial vendors as well as new academic projects bringing new innovations to the
field.

The same s true for modeling languages, where many formalisms have been introduced until the
Unified Modeling Language (UML) has been adopted as the standard by industrial developers.

The reasons preventing formal verification from making a similar breakthrough are not entirely
clear. However, there are a number of issues that make its use in industrial practice difficult. First
and foremost, writing concise specifications is very time-consuming. Further, formal methods
are harder to integrate seamlessly into existing build chains than testing. In addition, writing
tests is closer to the mental model of most software developers than writing specifications.
A test case makes an assumption about a single or a few traces of program logic, while predicates
used for specifications must apply to all possible traces. This makes it easier for developers to write
tests. Finally, unlike tests, formal verification may not provide concise counterexamples for failed
proof attempts (along with debugging features). However, this is changing rapidly.

As discussed in Section 3.4.3, many verification tools support Java, functional programming lan-
guages, or some custom language, while industry demand is for C/C++. There is a mismatch between
supply and demand. The growing adoption of Rust shows that developers prefer to move to a new
language that is type and memory safe, rather than go through the hassle of verifying C/C++
programs.

There is very little information on the web about how to integrate verification tools into common
build chains. The reason for this is that, with the exception of simple static analysis such as type
checking, verification tools cannot be fully automated and, in particular, the proofs performed can-
not be transferred to new code versions. In contrast to verification, tests can be easily automated
and repeated for new code versions. Usually, only few tests need to be adapted, if at all.

These problems could be mitigated by a good choice of tools according to one’s own needs. How-
ever, the investment required to fully master a verification tool is likely to be so high that
changing tools becomes uneconomical and a lock-in effect occurs. This is also true for program-
ming languages. However, there are often solutions that allow more interoperability. Often there
are interfaces that allow the integration of other programming languages or wrappers that allow
components written in different languages to be used in the same software system.

59

4. Scalability

Before discussing the three main dimensions of scalability, we start this chapter with examples of
successful applications of software verification. Afterward, we propose a scalability model to en-
hance the state of the art.

4.1. Applications of Software Verification

After presenting tools and their corresponding developer communities in the previous chapter, we
now show examples of applications of software verification. Some user communities are closely
related to specific tools. Other user communities are independent and rely on different tools to
verify different properties. The selection of the following example applications is motivated by the
idea of a fully verified software stack of a basic IT systems - a system that consists entirely of verified
components, from the operating system to applications such as a web browser.

—f Application }
| Middleware |

| User Space Services\

0OS

| Kernel Services |

Basic IT System

Figure 4.1.: Software stack of a basic IT system.

We chose operating systems, communication and cryptographic libraries, and JavaScript engines
asexamples. As a rather small number of operating systemsis used to build most of today’s systems,
successful attacks against them have a huge impact. In turn, providing a fully verified operating sys-
tem can thus eliminate a whole range of possible attacks at once and is a necessary component for
almost all systems. The same is true for widely used communication and cryptographic libraries.
A well known example of a compromised library with huge impact is the heartbleed bug in the
OpenSSL library. As a last example, we chose JavaScript engines as they are one of the most crucial
components for web browsers, since they execute remote code from generally untrusted sources.

4.1.1. Operating Systems

For more than 20 years, Microsoft has been providing the Static Driver Verifier (SDV) tool, which uses
static analysis of C code to ensure that device drivers correctly use the Windows kernel interfaces
and to verify their memory safety [Ball et al. 2011]. SDV uses Corral and Boogie for verification,
which leverage the Z3 SMT solver [Pavlinovic et al. 2016] as reasoning backend. There even exists
a benchmark for Boogie based on collected SDV datal. This is an interesting example as the very

!Microsoft SDV Benchmarks: https://github. com/boogie-org/sdvbench

60

https://github.com/boogie-org/sdvbench

Formal Verification of Complex Software Systems

narrow application case allows for a general set of specified properties, which alleviates the burden
of specifying each driver manually.

Recently, the Linux developers added a lightweight runtime verification approach based on online
monitoring of states to the Linux kernel v6.0 for usage with safety critical systems?. This approach
allows the system to monitor the execution trace of system events and compare it to a specification
using finite automata models [Oliveira et al. 2019]. The system can then react on detected devia-
tions and either log a warning or the kernel enters a panic state. Using this method, developers can
potentially detect and identify unexpected interactions and potential security and safety flaws, e.g.,
in drivers.

With regard to operating systems, the community around the seL4 microkernel is the most ac-
tive. Important properties were successfully verified for the seL4 microkernel for the first time in
2009 [Klein et al. 2009]. This was later extended to include other properties and verification of the
correctness of the binary code. Isabelle/HOL is the main verification tool used. Since 2020, the seL4
Foundation organizes the further development of seL4>. An interesting contribution of the original
verification of the seL4 kernel was the demonstration of the effort required to verify such a complex
system. They reported that the pure verification effort without the development of the tool or the
gaining of expertise was about 11 person years [Klein et al. 2009].

In October 2022, Google announced the development of CantripOS - an OS written in Rust and
based on the seL4 microkernel®. While it is currently unclear, which properties shall be verified for
the CantripOS components, its availability under Apache license and the use of Rust could attract a
huge community. Moreover, Google works on a low-power embedded platform called Sparrow as
the reference platform for CantripOS.

There are two selL4-based OSs with commercial licenses and support available - TRENTOS® by
HENSOLDT Cyber and Kry10 0S® by Kry10. While Kry10 OS is rather new, TRENTOS has been avail-
able for several years and HENSOLDT provides an SDK usable with the Raspberry Pi 3 board.

Regarding OS data structures for inter-process communication (IPC) Meta reports on verification
using Iris/Coq [Carbonneaux et al. 2022], while Amazon reports on verifying FreeRTOS IPC using
VeriFast [Chong and Jacobs 2021]. The activities of Google, Meta, and Amazon on software verifi-
cation are important for the further development of the topic. They usually tie their investments in
software security to the establishment of open source communities in order to benefit from scaling
effects of these communities. Google is a member of the seL4 Foundation.

4.1.2. Communication and Cryptographic Libraries

For communication and cryptographic libraries there is the project Everest’ aiming at a provably
secure communication stack [Bhargavan et al. 2017]. Project Everest covers a TLS 1.3 record layer
implementation, the HACL cryptographic libraries, and the QUIC protocol record layer. Parts of these
implementations are used in the Linux kernel, as well as the Mozilla web browser. Most parts use F*
and the corresponding verification tool chain. Some parts use Dafny. The libraries are delivered as
C or high-performance assembler code.

Furthermore, specialized verification tools like ProVerif, Tamarin, EasyCrypt and CryptoVerif exist,

2Linux Kernel Runtime Verification: https://docs .kernel.org/trace/rv/runtime-verification.html
3The selL4 foundation: https://sel4.systems/

*Cantrip0S: https://github.com/AmbiML/sparrow-cantrip-full

STRENTOS (seL4-based OS): https://www.trentos.de/

®Kry 10 (seL4-based OS): https://www.kry10.com/

"Project Everest: https://project-everest.github.io/

61

https://docs.kernel.org/trace/rv/runtime-verification.html
https://sel4.systems/
https://github.com/AmbiML/sparrow-cantrip-full
https://www.trentos.de/
https://www.kry10.com/
https://project-everest.github.io/

Formal Verification of Complex Software Systems

that are commonly used to reason about cryptographic properties and security of protocols. Hassan
et al. give a comprehensive overview of these tools [Hassan et al. 2021].

In the domain of distributed systems, the P framework® together with the P language is currently
getting momentum. It provides a state-machine based language for the formal specification of com-
plex distributed systems and is apparently used within the Amazon AWS team to analyze complex
protocols. The P framework toolchain uses model checking and symbolic execution (using SMT and
SAT solvers like ABC, Z3, CVC or YICES) to reason about properties like concurrency. The framework
can generate C, C#, and Java based code (see also Section 3.1.3).

The model checker mCRL2 supports verifying distributed systems and protocols, too.

4.1.3. JavaScript Engines

There is currently little work on verifying JavaScript engines, which are crucial components of web
browsers. While some research addressed non-optimizing just-in-time compilers (JIT) for JavaScript,
only [Brown et al. 2020] reports work on verifying state-of-the-art optimizing JITs. Using a tool named
VeRA, they verified the range analysis of JITs.

There is a lot more research on verifying JavaScript code itself. From a security view point, this
is not a replacement for a verified script engine of a browser. However, it supports web applica-
tions from trusted sources. Plain JavaScript without the use of a strict type system is hard to reason
about. Therefore, current work on securing JavaScript focuses on type safe replacement languages,
which can be translated to JavaScript to be integrated into JavaScript applications and tool chains.
Facebook has introduced the OCaml inspired Reason language?, closely integrated with their React
framework. Reason can be translated to JavaScript as well as OCaml and thus use any verification
tooling of the OCaml community. The VerifiedReact project!® directly targets reasoning about ap-
plications built using Reason/React. Google has introduced the Dart language!! which can be trans-
lated to JavaScript, too. Dart continues to add built-in security properties, like null-pointer safety.
However, Dart lacks a verification community comparable to Reason.

4.1.4. Conclusion

As shown in this section, there is quite a lot formal verification done in industrial applications. But at
the same time, the examples indicate that software verification is mostly advanced and promoted
by academic stakeholders and large IT companies like Microsoft, Google (Alphabet), Amazon, and
Facebook (Meta) - in particular their research divisions. This does not reflect the software market,
with numerous small and mid-sized companies. However, one has to keep in mind that applications
in aviation and some other critical areas are often referred to but are very hard to report about due to
the lack of transparency in these fields. This means that no matter what is done in these areas, their
push towards better and more applicable tools is very limited. They rarely formulate requirements
to tool communities. In exception, formal verification done by NASA is more transparent. DARPA
funded research has to be transparent, at least partially.

Currently, many activities are focused on type checking and memory safety, which is partially
achieved by switching to languages like Rust or ReasonML. It is unclear, if we will see more model
checking too.

8P Framework: https://p-org.github.io/P/

Reason: https://github.com/reasonml/reason
WyerifiedReact: https://github.com/imandra-ai/verified-react
"Dart programming language: https://dart.dev/

62

https://p-org.github.io/P/
 https://github.com/reasonml/reason
 https://github.com/imandra-ai/verified-react
 https://dart.dev/

Formal Verification of Complex Software Systems

There is a notable shift in the interest for software verification. Microsoft static driver verifier has
been introduced to keep system available and prevent Windows system crashes caused by faulty
drivers developed by device vendors. In contrast, securing cryptographic libraries or JavaScript code
is clearly dedicated to prevent attacks and information leakage. This appears to be a general trend
towards security rather than safety, as the fear of targeted cyberattacks is growing in industry as well
as governments.

4.2. Three Dimensions of Scalability

Scalability in the context of software verification can be considered in three different dimensions:
the software, the properties, and the method used. We will briefly discuss each of these dimensions.

The software to verify One may think of the size and complexity of the software being verified as
as the most important dimension when considering scalability. This is perhaps the most natural as-
pect of scalability, i.e., a particular method or tool scales well if it can verify larger pieces of code (in
the same amount of time). In this dimension, however, we will consider not only the size of the code
to be verified, but also its complexity. We will intentionally not define exactly what we consider com-
plex software, as what is considered complex may vary from tool to tool. However, typical examples
of code properties that are considered complex are concurrency and floating-point arithmetic. De-
pending on the language (or type of language) used, other features may also add complexity, such
as generic data types, lambda expressions, or even complex data types.

Following this definition, we consider a tool or method to scale better if it can handle larger or
more complex code (in the same amount of time).

The properties to verify As a second dimension, we consider the complexity of the properties to
be verified. Similar to the complexity of software, the complexity of properties is not uniquely de-
fined and thus cannot be objectively determined. As with software complexity, metrics would only
be useful for the narrow purpose for which they are defined. Again, the approach used to verify
a particular property has a direct impact on how complex that property is considered to be, since
sometools are either specifically designed for, or at least focus on, certain types of properties and are
thus naturally suited for them. However, if a particular class of propertiesis a subset of another class
of properties, the latter may objectively be considered more complex. In this sense, functional cor-
rectness properties are probably the most complex properties to verify, since functional correctness
subsumes most other properties, including lightweight and generic properties, safety, and termina-
tion. In this sense, we consider a tool to scale better if it is able to verify a more complex property of
the same program (in the same time frame).

The verification method The final dimension of scalability is the verification method used. Here,
we consider limitations that are inherent to a particular approach or method. Examples of such lim-
itations might be the inability of a bounded model checker to provide guarantees above a specified
threshold, the need for deductive verification tools such as KeY to require a huge amount of auxil-
iary specifications, or the degree to which a tool is able to reuse proofs from a previously verified
version of the same software. This dimension is probably the most difficult to evaluate objectively,
since these limitations are very different in nature, and the impact that such a limitation may have

63

Formal Verification of Complex Software Systems

in a given situation varies significantly with the scenario under consideration. However, we still con-
sider this dimension to be very relevant, as it is the fundamental limitations associated with certain
approaches that may prove to be the most difficult to overcome, and thus should be carefully con-
sidered when choosing a particular approach or tool for a verification task.

Correlation of the three dimensions We have already indirectly mentioned that the different di-
mensions of scalability are correlated. We often observe that tradeoffs must be made between the
size of the system that can be studied and the complexity of the properties that are being exam-
ined. Similarly, approaches that accept major limitations may be able to verify more complex code
or larger portions of code than approaches that try to impose as few limitations as possible on the
user. In a perfect world, we would have a tool that has no constraints and verifies arbitrarily com-
plex properties for large systems. However, such a systemis very unlikely to ever exist for the reasons
mentioned above, so careful considerations must be made. We think that the dimensions presented
here can provide a good basis for comparing different approaches and tools.

4.3. Scalability Model

In the previous section, we introduced three dimensions of scalability for software verification. Im-
proving any approach or tool in any of these three dimensions can be considered an improvement
in scalability. With this in mind, we propose a scalability model aimed atimproving the scalability of
formal methods in a general sense. Specifically, we will not talk about detailed minor adjustments
to individual tools to push the limits of what they can do, but rather in a more general sense about
how formal methods for software verification can be scaled to larger systems.

We envision four major ways to achieve such an improvement in scalability:

« reduce the amount of specification needed
+ enable composability
« enhance parallelization

« reuse proofs

Reducing specification effort For a long time, the bottleneck for verifying functional correctness
has been the development of appropriate specifications [Baumann et al. 2012]. So it makes sense
to investigate ways to reduce the effort required. We need to carefully distinguish between require-
ment specifications, which are the specifications needed to describe the property one wants to ver-
ify, and auxiliary specifications (e.g., loop invariants), which are only needed for some tools to be
able to find proofs. While one can argue that in an ideal world auxiliary specifications can be avoided
completely, the requirement specification will always be necessary. Thus, one way to reduce the
specification effort is to reduce the amount of auxiliary specifications needed. Depending on the
approach, this varies considerably, e.g., bounded model checkers often need no auxiliary specifica-
tions at all, while deductive verification tools tend to need a lot of them. There are already several
approaches that aim at automatically inferring auxiliary specifications (mainly loop invariants). One
idea to increase scalability is to extend these approaches and try to use them to provide even more
auxiliary specifications. For requirement specifications, this is (as noted above) not so easy, but one
could imagine tools and languages that reduce the effort of writing such requirement specifications.

64

Formal Verification of Complex Software Systems

Aninteresting new area of research is how Al can provide new ways of specifying programs by simply
informally telling a system the underlying idea of some piece of code (e.g., “This is a sorting algo-
rithm”) and having the system automatically propose an appropriate formal specification - which
the user still has to inspect for its appropriateness and possibly adapt but not write from scratch.
One system that is already able to do this for simple specifications is ChatGPT*2. Considering the
amount of specification that is often required for complex systems, this could be a huge factor in
scaling.

Enabling composability When describing the dimensions of scalability, we mentioned that dif-
ferent tools and approaches have different weaknesses and strengths across all dimensions. Thus,
a natural consideration to improve scalability is to try to combine different tools and approaches
in a beneficial way. We are convinced that this is a very promising line of thinking, and one that
has already been adopted to some extent. In Section 3.1, where we described the different formal
approaches, we mentioned several ideas on how to combine different concepts to achieve better
results. A famous example is the use of symbolic execution in model checkers to prevent state ex-
plosion.

We envision two high-level ways to combine different tools advantageously. The first idea is to
use different tools for different types of properties. For example, it might be promising to prove
functional correctness with a different set of tools than those used for lightweight properties. Using
this approach, each tool could specialize in a set of properties and be used specifically for that set.
Other tools may rely on already proven properties as additional assumptions, which could make the
proof easier. Extending this idea, the second way to combine tools is to use tools together to prove
complex properties. Often, especially fully automatic provers are not able to establish a proof for
very complex properties, but succeed quickly once some additional lemma is given. One obvious
way to do this is to use different tools (e.g., fully automatic and interactive) to first (manually) prove
a complex lemma and then use that proof to establish the desired property. Both ways, however,
require that the tools used are somehow able to interoperate. The easiest way to achieve this is for
both tools to be able to understand the same specification language.

Enhancing parallelization It may sound like a trivial idea, but parallelization has probably a lot
of potential when scaling formal methods for software. Automatic reasoning like solving SAT or SMT
problems proved to be very hard to parallelize, however verification tools which have to prove com-
plex properties can parallelize on a higher level. Especially in combination with the previous aspect
of combining different tools, this could lead to interesting performance enhancements. This is an
alternative to waiting for more powerful hardware.

Particularly, quantum computing is often considered as a silver bullet for all computational hard
problems. However, currently hard to solve SAT or SMT instances are rather large, i.e., encoding
them on a quantum computer needs many qubits. This prevents SAT/SMT solving from qualifying
as a short- or midterm application of quantum computing. Since SAT and SMT solving are core al-
gorithms for many applications, much research on quantum algorithms is done, e.g., see the state
of the art report on quantum SAT algorithms published by the European NEASQC project!3.

Proof reuse In Section 4.1, we provided several examples of relevant systems that have already
been verified. Anaturalidea to increase scalability is to make use of existing proofs. This can be done

2Conversational language model - ChatGPT: https://openai.com/blog/chatgpt/
NEASQC report on quantum SAT: https: //www.neasqc.eu/several-neasqc-deliverables-published/

65

https://openai.com/blog/chatgpt/
https://www.neasqc.eu/several-neasqc-deliverables-published/

Formal Verification of Complex Software Systems

in two ways. Either build a system on top of components that have already been verified and thus
inherit the guarantees, or have a system that is able to extend on top of proofs. While the first version
of reusing proofs is easier to do, it also requires that the exact guarantees provided are sufficient
for one’s own use. The second idea would be to be able to extend proofs, for example by adding
additional properties. This, however, requires a sophisticated approach to reusing and extending
proofs that have already been done. In any case, we think that both ways should be considered
when building new systems.

Intentionally not considered For the sake of completeness, we mention that a well-established
way to provide scalable formal methods is to give up on soundness. This basically means that one
is willing to accept that no formal guarantees can be established in order to achieve better scaling.
Many prominent companies such as Meta, Amazon, or SAP have systems that are of this type - for
example, Facebook’s static analysis tool infer'4. These systems provide alerts that developers can
then review and fix potential bugs, but not getting an error does not guarantee that the system is
correct. Since we have explicitly stated that we do not consider such approaches because they do
not provide formal guarantees, we exclude this approach as a way to achieve scalability here. It is
worth mentioning, however, as it is often applicable to industrial-scale code bases.

Combination of the improvements We have already hinted at the possible combinations of the
individual scalability improvements. We envision combining all of these approaches into a single
development model to facilitate the implementation and verification of a fully verified software sys-
tem. We believe that in order to achieve the best possible scalability, improvements in each of the
dimensions are necessary. Specific recommendations on how to achieve this are given in Chapter 5.
Many of these recommendations build on each other, and thus form a kind of natural combination.

M|nfer - static analyzer for Java, C, C++: https://github. com/facebook/infer

66

https://github.com/facebook/infer

5. Recommended Actions

With the vision of verifying the full software stack of complex systems, we see three important goals
for research and community action:

1. improving the verification of small critical components with respect to individual properties,

2. improvingthe robustness of verification with respect to changes in software and requirements,
and

3. improving the composability of verified components and different properties to fully verified
complex systems

Figure 5.1 visualizes the three goals and the fact that robustness to change is needed for both small
components and for complex systems.

Full stack verification of
complex software systems

/ A \

Composability of verified

Verification of indivdual Robust verification)
properties for small with respect to compone_nts and different
critical components change of software properties to complex

verified systems

< Usability > < Composability >

< Interoperability >

Figure 5.1.: Goals towards the vision of verifying the full software stack of complex systems

We make the distinction between verifying a single property for small components and veri-
fying multiple properties or complex systems because we believe the former is possible with
today’s technology and tools. However, depending on the chosen property, the programming lan-
guage to be verified, and the availability of specifications, the necessary investment to verify a small
component can be very high. Therefore, research should focus on improving usability and interop-
erability to reduce the effort and investment required.

In contrast, the verification of properties for complex systems is still an open question. From a the-
oretical point of view, composability is given, since all formal verification methods - and the proofs
they generate - are based on some kind of logic. In practice, however, combining proofs from dif-
ferent tools remains a challenge. As a result, we believe that the major research effort should be
directed toward making the use of formal methods more scalable. For this reason, most of our rec-
ommended actions are direct consequences of the observations made in Section 4.3.

Achieving the three goals above will require many research and community actions. In the next
section, we describe appropriate actions and what a roadmap to a fully verified software stack might

67

Formal Verification of Complex Software Systems

look like. We distinguish between community actions and research actions. Community actions are
intended to stimulate the interest of industrial developers in software verification. Research actions
will address fundamental open problems in software verification. Table 5.1 gives an overview of the
two proposed community actions and seven research actions.

|| Action | Goal | Target| Risk | Time [TRL |

Cl | Reference applica- | Focus research efforts / easily | s(c) [<2 a
tions and platforms | enter research area

C2 | Guidance for verifi- | Guide users which tools and | s l <2 a
cation properties to address to maxi-

mize benefit
R1 | Interoperability Enable users to switch toolingif | s m 2-5 a
required

R2 | Robustness to | Reduce cost to verify changed | s h 2-5 f
change code

R3 | Demonstrate con- | Improve state-of-the-art of ver- | s m 2-5 f
currency with Rust ifying concurrent systems

R4 | Al-based generation | Al-based assistance for generat- | s h 2-5 f
of specifications ing (auxiliary) specifications

R5 | Composability of | Demonstrate tooling to prove a | s m 2-5 a
properties set of properties

R6 | Composability for | Manage coverage of proofs for | ¢ h >5 f
complex systems complex systems

R7 | Robustness to | Manage impact of changes to | c h >5 f
change of complex | complexsystems regarding ver-
systems ification

Table 5.1.: Overview of recommended community and research actions (Target: small components,
complex systems, Risk: low/medium/high, Time in years, TRL = technology readiness
level: applied research, fundamental research)

5.1. Community Actions

5.1.1. C1: Reference Applications and Platforms

As a seed for a high-impact software verification community, providing reference applications and
platforms could be a good starting point. They provide an incentive to participate in acommunity, to
integrate own methods and tools, and to compete with others. They also ensure more comparable
research results. Reference applications should be tightly coupled to a platform to include low-level
0S software and to enable links to hardware verification activities.

As a suitable reference application and platform, we envision a minimalistic board (e.g., Risc-V
ESP32) with a minimal software stack (0S, a few drivers, and a demo application with minimal
functionality). The OS could be very limited, with a fixed schedule and no support for user-level
concurrency. Essential for the selection of this system would be to minimize the number of external
input channels (especially excluding Internet connections), to minimize the number of devices and
thus drivers needed to run the application, and to minimize the code complexity of the application

68

Formal Verification of Complex Software Systems

itself. The main goal of such afirst reference platform would be to gather information and experience
in verifying whole systems rather than individual components, as is most often done in research. For
the hardware platform, Google’s Sparrow board or HENSOLDT’s Raspberry Pi 3 based TRENTOS SDK
could be used as a reference (see Section 4.1.1 on applications of software verification).

An advantage of starting with such asetup is that it can be easily extended incrementally to include
more features that are directly applicable to the ultimate goal of a fully verified system. As a long-
term roadmap, we envision three such practice-oriented reference systems, each building on the
experience of the previous one. We have outlined the basics for the first one above.

The second would be a mid-range application such as an loT system for machine control,
including more features such as concurrency, networking, and cryptographic support for key ex-
change.

The third reference application could be a complete desktop system including a web browser
to run web applications. In fact, the complexity of a web browser represents a wide variety of sys-
tems and includes complex communication. This third reference application would already meet
the goal of verifying complex systems. Critical to the success of each phase is that a well-established
process guides the documentation and ensures that the lessons learned are used in the next phase.

Each reference application should include descriptions of the application and its use case, im-
plementations, and functional specifications for all software components. To assemble these arti-
facts, each reference application could be conducted as a case study. The disadvantage of providing
implementations and specifications is that the set of programming and specification languages is
fixed. However, having well-defined components and interfaces allows others to use their own tech-
niques, such as generating code from specification languages and proving the transformations (see
Refinement Method in Section 3.1.3). Providing a pure natural language specification and asking
the community for formal specifications was very influential in the 90s (see the famous steam boiler
control [Abrial et al. 1996]) and shaped the design of many specification languages as well as the un-
derstanding of their capabilities and limitations. Today, the focus should be on performing proofs
rather than writing formal specifications.

The goal for all of these reference applications needs not to be the development of new tools or
approaches, but rather the achievement of a verified artifact and the collection of new requirements
from lessons learned regarding usability, interoperability, and composability of tools.

In estimating the effort required for this community action, it is important to keep in mind the
flexibility of the scope and the possibility of incrementally increasing the complexity of these case
studies. Therefore, the time and resources needed to complete them can be defined very flexibly.
This depends on which features are included in each case study.

+ The minimalist board case study could be a small project lasting 1-2 years with only a few
people involved (estimated 7 person-years).

+ In contrast, the full desktop with web browser case study would most likely require several
years with many people from multiple organizations to accomplish a verification task of that
magnitude. For comparison, consider the reported 11 person-years of effort to initially verify
the seL4 kernel [Klein et al. 2009].

+ At least for the minimalist board, the risk of such a project failing is very low, as we argue that
performing such a case study with the tools available today is more a question of time and
resources than whether it is possible or not.

69

Formal Verification of Complex Software Systems

5.1.2. C2: Guidance for Verification

To lower the barriers to formal verification, and thus to get more developers using formal methods,
they need guidance on goals and tools. For example, the Open Web Application Security Project
(OWASP) successfully guides developersin securing web applications by regularly compiling a top 10
list of the most critical security risks for web applications!. A similar list could be compiled in the
context of software verification for basic IT systems - for example, buffer overflows are still one of
the most critical risks, so proving memory safety should be a top priority. The recommendation
of properties to prove should include appropriate tools. Perhaps even convenient programming
languages, if developers are able to choose them. This guidance should be done in close cooperation
with the community action C1 on Reference Applications and Platforms (see Section 5.1.1).

Thinking beyond this low-threshold recommendation, one could look for standardized sets of
properties that correspond to different levels of security. This requires a common understand-
ing and definition of these properties. Technically, these sets of properties should be formulated in a
specification language that is used by many stakeholders. For practical use, there could be ascend-
ing levels of verification in terms of cost-benefit ratio, e.g., type checking, memory safety, functional
correctness.

In the long term, standardization could be extended to define a fixed set of languages and tools for
the development of safety-critical systems. This would help companies plan long-term investments
by knowing what tools and languages they can build on. Furthermore, a standard would push to-
wards libraries of already verified components. This would make it easier to reuse components and
reduce the effort required to develop new applications. As a final benefit, such a standard would
also allow for targeted investment and research in those specific tools and languages, thereby ad-
dressing potential remaining vulnerabilities.

On the other hand, defining a standard in terms of a closed set of tools and languages restricts the
choices of developers and researchers and confines innovation to a narrow space. Itis therefore nec-
essary to find a sweet spot between unnecessarily restricting the choice of tools and languages
and allowing for the benefits of standardization. We believe that finding such a sweet spot is pos-
sible, necessary, and most likely achievable by defining clear parameters while leaving the technical
details to the developers. For example, one could require software to be memory safe, but leave it
to the developer to choose whether this is achieved by using a memory safe language such as Java,
or by manually proving it for a language such as C. This allows further progress for powerful (e.g.,
in terms of memory safety) languages such as Rust, which have rapidly growing industrial adoption
but currently limited support for verification. Our recommended research action R1 on Interoper-
ability (see Section 5.2.1) between tools is intended to improve flexibility in tool selection and, in
particular, to enable tool switching.

Since we have described several sequential steps in this action, we estimate the effort for each of
these steps.

+ Recommending properties to be proven based on real-world bugs is a fairly small project, last-
ing 1-2 years and only a few people involved (estimated 4 person-years).

+ Defining sets of properties corresponding to security levels could be part of the project men-
tioned above, slightly increasing the effort (estimated 3 person-year).

+ Standardizing a set of languages and tools for developing security-critical systems is an idea
we do not recommend for the next few years, as explained before.

'OWASP top 10 list: https: //owasp.org/www-project-top-ten/

70

https://owasp.org/www-project-top-ten/

Formal Verification of Complex Software Systems

5.2. Research Actions

5.2.1. R1:Interoperability

To achieve widespread adoption of formal verification, it is important to keep in mind that develop-
ers are likely to start by using highly automated tools to prove relatively simple properties. If their
expectations are met, they will move on to more complex properties. And they may need to move
to more powerful tools. Currently, for most tool combinations (especially when moving to more
powerful methods), this means redoing specifications and not being able to reuse parts of proofs.
Therefore, we recommend improving interoperability between tools to reduce the loss of invest-
ment when switching to another tool.

To improve interoperability, there should be commonly used specification languages with the
ability to express (1) properties related to the semantics of the target language, and (2) proofs
or lemmas. In addition, tool communities should be encouraged to provide transformations to and
from these languages. Initial work on proof transformation is being done by the Isabelle commu-
nity? as part of the European COST action EuroProofNet [EuroProofNet 2021]. Their focus is on
exchanging proofs within the Isabelle/Coq ecosystem, while we recommend extending the scope
towards exchanging properties and proofs between completely different tools based on different
verification methods.

Besides the work on specification languages, this action could include the organization of chal-
lenges to demonstrate interoperability by transferring properties and proofs. Interoperability is a
good way to increase competition between tool communities, especially with respect to usability.

While we use interoperability as the term for this action, Hahnle and Huisman [Hahnle and Huis-
man 2019] use integration. They consider integration between verification tools and methods, as
well as integration with other software quality assurance approaches and tools.

Looking at the effort required for this action, we note the following.

+ Work on (a common) specification language that is expressive enough to enable interoper-
ability between tools based on different verification methods should be done in one (or a few)
large project(s) involving many people and multiple stakeholders, lasting 3-5 years (estimated
52 to 60 person-years, depending on number of stakeholders and number of projects).

+ In addition, there could be smaller projects to demonstrate transformations between specific
tools. These are rather small projects, lasting 1-2 years and involving only a few people (esti-
mated 9 person-years per project).

5.2.2. R2: Robustness to Change

The era of agile development is defined by the regular delivery of new features that users demand.
This means that focusing on infrequent releases is no longer possible if you want to keep up with
the competition. For formal methods to be industry ready, they must ideally be fully assimilable
into standard build chains. This means that formal verification must find solutions to reduce the
cost of re-verifying changed code. Verifying a subsequent code version should require an order of
magnitude less effort than verifying the original code version. We argue that there are three main
approaches to achieving this: (1) the verification tool must be able to effectively reuse existing
proofs for the updated versions of the code, (2) one must find a way to perform only those proofs

2Exporting Isabelle proofs to Dedukti: https://github. com/Deducteam/isabelle_dedukti

71

https://github.com/Deducteam/isabelle_dedukti

Formal Verification of Complex Software Systems

that are directly affected by the changes made, and (3) if only the code but not the specification is
changed, one can use relational verification.

The first idea is already implemented in several tools to varying degrees. Any proof scripting lan-
guage is a step in this direction, as small changes in the code could at best result in the same proof
as before, but for industrial use this would need to be developed further and involve much more
sophisticated methods. For the second idea, one way to achieve this goal is to perform an impact
analysis on specifications, proofs, and code to determine the specific parts of code/proofs that need
to be re-verified. For the last idea, relational verification is a well-established area of research that
can provide significant advantages over traditional functional verification in some scenarios. In par-
ticular, equivalence checking of programs is exactly the problem that needs to be solved here. Again,
to our knowledge, there is no approach large enough to satisfy the requirements we have outlined,
but it is a promising area to consider in this context.

Since this is a rather fundamental problem, we have the following notes on the effort required.

+ Achievingsignificant resultsin this area will require at least 3-5 years of concentrated research.

+ We recommend several projects, each addressing at least one of the three approaches men-
tioned above. Alternatively, there could be one or two large projects addressing all three ap-
proaches.

+ We anticipate that there could be small projects focused on methodological improvements
carried out by afew people, as well as large projects involving demonstration proof-of-concept
tools carried out by many stakeholders.

« Based on the expected project mix, we estimate an effort of 48 to 58 person-years.

5.2.3. R3: Demonstrate Concurrency with Rust

Concurrency in programs is a challenge for verification methods and tools. The challenge is to con-
sider all possible thread interactions and prove the correctness of all of them. Tools typically ap-
proach this either by ignoring concurrency altogether and focusing on sequential programs, or by
considering a rather high-level view of the system with a coarse abstraction and thus dealing with
the complexity. The availability of tools that can do precise reasoning for concurrent programs is
very limited. Since concurrency is ubiquitous in modern processors, it is essential that verification
tools can deal with it. Further research in this area is needed to be able to verify complex systems as
they are used today (see the state of the art in verification of concurrent software in Section 3.5.1).

Since C has no built-in support for concurrency, concurrent C software always depends on addi-
tional libraries. This makes verification difficult. While C++ has begun to integrate support for con-
currency with the C++11 standard, we advocate Rust with built-in support for concurrency and
additional memory safety. We expect to see increasing adoption of Rust over the next years, driven
by events such as the acceptance of Rust code in the Linux kernel and the NSA recommendation for
memory safe languages [NSA 2022].

By demonstration, we mean having a concurrent reference application written in Rust - which is
more realistic than having an OS component like the kernel or drivers written in Rust. Given this ref-
erence application, a verification toolchain should be demonstrated. As described in Section 3.4.3.4
on state-of-the-art Rust tools, there are currently many new tools or extensions to tools for Rust.
There is also an ongoing project called vellvm [Zakowski et al. 2021] to provide a verified compi-
lation toolchain for LLVM, which is also used for Rust. It should be noted, however, that there is

72

Formal Verification of Complex Software Systems

currently no established formal specification of the semantics of Rust. This could involve extending
a tool or creating a new one.

Estimating the effort required for this action must take into account the rapid adoption and evo-
lution of Rust.

+ We recommend a small study to determine the state of the art (estimated 0,5 person-years).

+ Depending on the state of the art, the number of building blocks required to have a complete
verification chain for concurrent code in Rust will vary.

+ Building on existing well-established tools together with appropriate extensions, we expect
that a demonstration of a verified concurrent component in Rust could be done in 3-5 years
by a mid-sized group of people (estimated 21 to 24 person-years).

+ If the basic building blocks for verifying Rust are still missing, the time and effort required will
increase.

« Since concurrency is explicitly difficult to verify and verifying Rust is a fairly new topic, we
estimate the risk of such a case study to be higher than for actions R1 and R2.

5.2.4. R4: Al-based Generation of Specifications

As described in the Scalability Model (see Section 4.3), one idea for reducing the amount of specifi-
cations needed for verification is to use recent advances in Al. When considering the use of Al, there
are two possible ways to apply Al to verification. The first is to use Al to perform proofs, mainly
by selecting the next rule/tactic to apply in (partially) manual proof systems. At this point, we do
not recommend addressing this topic, as it is already being investigated in Working Group 5 of the
ongoing COST action EuroProofNet? (see [EuroProofNet 2021] for their working plan). The second
is to use Al to generate (auxiliary) specifications and thus reduce a large part of the manual work
required for complex proofs. We have already discussed how this can be donein detail in the context
of scalability, and will therefore not go into it here (see Scalability Model in Section 4.3).

While the benefits of automatic specification generation could be huge, we are skeptical that suffi-
cient quality of Al-generated specifications can be achieved. Therefore, we consider the risk of such
a project failing to be relatively high.

+ We recommend starting with a medium sized project of about 2-5 years, during which this
approach needs to be further evaluated.

+ Several stakeholders should be involved in order to take into account the required Al compe-
tencies.

+ We estimate an effort of 20 to 24 person-years.

5.2.5. R5: Composability of Properties

While the previous actions focus on proving individual properties, there is also a need to prove a set
of properties foran application. Such a set could be defined either based onimportance with respect
to real-world bugs and attacks, or to meet a defined level of security (see community action C2 on

*European COST action - EuroProofNet: https://www.cost.eu/actions/CA20111/

73

https://www.cost.eu/actions/CA20111/

Formal Verification of Complex Software Systems

Guidance for Verification in Section 5.1.2). Most of the currently available tools specialize in proving
specific properties or suffer from scalability issues. Therefore, to prove complex sets of properties,
a collection of multiple tools is required. For example, Amazon started with a single tool (TLA+) to
verify AWS services and then gradually expanded to using more than 10 different tools to cover more
properties [Peisert 2022].

The goal of this effort is to demonstrate the alignment of tools to prove a set of properties.
This includes finding tools that can be easily aligned, i.e., using the same programming and spec-
ification language. Or, alternatively, using transformations between the tools (see research action
R1 on Interoperability in Section 5.2.1). If one of the selected tools is not able to handle the whole
component in terms of scalability, a decomposition suitable for all tools is needed. The decom-
position could address the component itself as well as the properties to be verified. The difficulty is
to maintain a high level of reuse between the selected tools.

Regarding the effort required for this action, we denote the following.

« We recommend a single moderate-sized project involving multiple stakeholders (estimated
26 to 32 person-years).

« This project could be a direct follow-up to the project we recommend for community action
R2 Guidance for Verification.

5.2.6. R6: Composability for Complex Systems

While the previous research actions clearly focus on the verification of small components written
in one target programming language, this action focuses on complex systems composed of com-
ponents written in different languages, e.g., C and Rust at the OS level and Java at the application
level.

As described in the Scalability Model (see Section 4.3), composing individually verified compo-
nents into a fully verified system is a much more promising way than improving the scalability of
tools to the size of complex systems. For such a composed complex system, one needs to thoroughly
manage the verified properties of all components. Such a proof management system keeps track
of which properties have been verified for which component, along with their interactions. In
particular, the proof management system should be able to derive the overall coverage of the
properties from the coverage of individual proofs. When verifying a complex system, the first step
is to establish a set of basic properties. This set of properties can then be incrementally expanded
over time to include more and more complex properties. This is particularly interesting with respect
to attacker models, where some components or properties are addressed more directly than others
(see community action C2 on Guidance for Verification in Section 5.1.2). Such a proof management
system would greatly benefit from improved interoperability between tools as described in the re-
search action R1 on Interoperability (see Section 5.2.1).

To manage verified properties of components of a complex system, one must describe the under-
lying software architecture of the system, in particular the layers of the system. In Figure 4.1, we
presented a possible architecture of a basic IT system. This architecture is still very coarse-grained
and can easily be refined to a more detailed view. Identifying the relevant layers in the software ar-
chitecture allows the rigorous specification of all interfaces between components. Such a layered
specification has several advantages, the most important of which are that (1) each layer is an inde-
pendent component and thus can be replaced at any point without affecting the correctness of the
rest of the system as long as the specification is still respected, and (2) due to the modularization,

74

Formal Verification of Complex Software Systems

each layer can be verified independently and thus parallelization is possible. Thus, such a decom-
position provides the building blocks from which a system-wide verification effort can be started.
Looking at the effort required for this action, we note the following.

+ We recommend a single medium sized project, building upon the interoperability results of
action R1 and last 2-5 years.

+ The project should involve multiple stakeholders to account for the many tools needed to ver-
ify components written in different programming languages.

« We estimate a effort of 22 to 26 person-years.

5.2.7. R7: Robustness to Change of Complex Systems

Research action R2 on Robustness to Change (see Section 5.2.2) focuses on small components. There,
we described the need to analyze the impact of code changes on existing proofs. Obviously, track-
ing changes and their impact becomes more difficult as the system grows. Therefore, the solutions
developed in R2 to handle changes for small components need to be scaled to complex systems.
In particular, complex systems are made up of components written in different programming lan-
guages. This makes it difficult to use established methods for change impact analysis, as most of
them were designed for complex systems written in a single programming language.

The goal of this action is to find scalable solutions for analyzing the impact of changes to veri-
fied components and systems. This task can either (1) be decomposed by first identifying changes
to components and then using the solutions from research action R2 to analyze the internal im-
pact within those components, or (2) improve change impact analysis methods to handle the whole
system, even if its parts are written in different languages. Either way, the proof management tech-
niques from research action R6 on Composability for Complex Systems (see Section 5.2.6) are an
essential building block of this action.

This action could be a direct continuation of research action R2 (and R6). In terms of estimating
effort, we note the following.

+ We recommend several projects to give the opportunity to explore both directions we men-
tioned.

+ The projects should be medium to large, last 2-5 years, and involve several stakeholders.

« Forall projects we estimate an total effort of 38 to 42 person-years.

5.3. Dependencies between Actions
Figure 5.2 shows the dependencies of all actions along with their duration and risk estimation. As

stated in the descriptions of the different actions, there are recommendations to align some actions
with other (represented as dashed lines) and strong dependencies between actions (bold lines).

75

Formal Verification of Complex Software Systems

high risk .
> 50% 1 R4: Al-based Generation
of Specification 7: Robustness to Change
of Complex Systems
R2: Robustness to
Change
/{ R6: Composablllty for ’
R1: Interoperability Complex Systems
medium risk
<30% R3: Demonstrate
Concurrency with Rust R5: Composability of
,/7 - Properties
C1: Reference L
Applications and Platforms e
; -/’_,,
low risk C2: Guidance for
<10% Verification
short term < 2 years mid term 2-5 years long term > 5 years

Figure 5.2.: Dependencies between actions (direction of arrow = is important for, dashed arrow =
recommendation to align, bold arrow = strong dependency) and estimates on timeline
and risk of each action

76

6. Summary

In this study, we have shown that there are many mature tools for formal verification. However,
adoption by industrial users is still low. The tool communities are either driven by academic re-
search or by research departments of large IT companies. The sharp increase in security attacks
against all kinds of software components has encouraged large IT companies such as Google, Ama-
zon, and Facebook to increase their investments in formal verification. Compared to other software
assurance tools, there has not yet been a developer-driven focus on a few powerful and widely used
verification tools. This is consistent with the findings of Berkeley Labs’ current state analysis [Peisert
2022]. Preisert recommends increasing the usability of tools and improving the features of tools and
languages to increase developer adoption. In addition, he recommends exploring the use of secure
languages such as Rust and growing the still very small Rust verification community. We support
these recommendations, and our recommended actions in Chapter 5 are quite similar. However, we
recommend two additional important areas of research.

First, we argue that tool interoperability needs to be increased to allow developers to switch tools
as needed and to support the composability of verified components into fully verified complex sys-
tems. Second, we argue that the issue of robustness to change needs to be addressed. Verifying
a particular release provides strong guarantees for that code. However, in the real world, we see
that new bugs are introduced into the code all the time. Therefore, the ability to re-verify each new
version of the code is an important goal. Hahnle and Huisman [Hahnle and Huisman 2019] sub-
sume interoperability and robustness to change under the term integration - the former as tool and
method integration, and the latter as integration into the software production environment.

Formal verification tools are mature enough to prove many different properties of small com-
ponents. However, industrial developers need guidance on how best to do this and to encourage
investment in formal verification. Verification of complex systems is still a vision with an unclear
roadmap. We have recommended some actions that we believe will improve the composability of
smaller verified components into verified complex systems. For us, composability includes interop-
erability between tools as well as transparency of what has been verified in a complex system.

7

78

Glossary

Abstract Interpretation

ACL2

Agda

Al

Alloy Analyzer
AproVE
Astrée

C

C++

CBMC
CLI

Coq
CPAChecker
Dafny

Deductive Verification

Event-B

F*

Frama C

GUI

Formal Verification of Complex Software Systems

A formal method which abstracts concrete values by ab-
stract domains and is thus able to reason render infinite do-
mains finite.

A theorem prover for high-level descriptions of systems

a programming language which also allows writing proofs
In the context of this work we consider approaches based on
machine learning under the term artificial intelligence (Al).
Fully automatic tool based on the alloy language
termination proofs for several languages

Fully automatic static analysis tool for safety propertiesin C

C is one of the oldest and most used high level languages.
It is still predominantly used in the development of perfor-
mance critical and low level system. C has to be compiled
dependant on the used operating system.

C++was develop as an extension to C to add several features
including the support for classes and thus object oriented
programming. C++ has to be compiled and is operating sys-
tem dependant.

A bounded model checker for C

Command Line Interface describes the way of interacting
with a program/tool via a console by writing out acommand
which is setting options and parameters for the program/-
tool.

theorem prover with the ability to be applied to program-
ming languages

configurable fully automatic checker for

Language and automatic verifier for custom language Dafny
(can be refined to C)

A formal approach in which a software system is translated
into some underlying logic and formal reasoning techniques
(deduction) are then applied to show the adherence of the
system to a given specification.

Set theory based refinement tool

a language designed for formal verification with corre-
sponding tools which can be compiled to several standard

languages i
Framework for the analysis of C programs

Graphical User Interface describes the way of interacting

with a program via a graphical interface which is the normal
way for user friendly programs.

79

14

23
24
65,73

25
26
27

20

20

28,58

26, 28, 30,
31, 33,
34, 40,
42-48, 50
29

30
14,31

13

32

14,33

34

23,25, 21,
29, 32, 36,
37, 49,
51-53

intermediate language

Isabelle

Java

Key System

KIV

Lean
mCRL2

Model Checking

Nagini

NuXMV

OpenJML

PVS

Refinement

Formal Verification of Complex Software Systems

Asthe name suggests we consider an intermediate language
an intermediate representation between the original pro-
gramming or specification language before being then fi-
nally again translated into machine code or logic. Thus
this concept is working and used for both programming and
specification languages.

Proof assistant for mathematical formulas

Java is a famously object oriented language which is still
one of the most used in the world. Java code is compiled
to byte-code which runs in the Java virtual machine and is
thus cross platform compatible.

Interactive verification tool for Java with JML specifications
interactive verification of abstract models with refinement
capabilities

extensible interactive Theorem prover

language and toolset for verification of concurrent systems
and protocols

Aformalapproach in which a systemis model as a (normally
finite) state automaton and shown that this automaton ad-
heres to a given specification.

functional correctness of typed Python based on Viper
framework

symbolic model checker for the analysis of synchronous sys-
tems

Fully automatic prover for Java specified by JML

interactive verification tool based on custom language for
high level description of complex systems

A formal approach in which a system is described a very
coarse high level first and then iteratively refined down to
actual code each time proving the refinement preserves the
original specification.

80

15

36

20

37

38

39

40

14

42

43

44

45

14

Rust

SA Workbench

SAT

SeaHorn
SMACK

SMT

Spark ADA
SPIN
Static Driver Verifier

TLA+

UPPAAL

VeriFast

Formal Verification of Complex Software Systems

Rust is a rather new programming language that is similar
to syntactically close to C however provides memory-safety
and native support for concurrency.

Software Analysis Workbench is a verification tool based on
dependent type theory

Boolean satisfiability problem the NP-hard problem of de-
termining whether a formula of Boolean variables is satis-
fiable. A tool able to solve answer such questions is called
SAT-solver.

A fully automated analysis framework for LLVM-based lan-
guages

SMACK is both a modular software verification toolchain
and a self-contained software verifier

satisfiability modulo theory the NP-hard problem of deter-
mining whether a given formula is true (given a certain for-
mal theory). A tool able to solve answer such questions is
called SMT-solver.

platform with language verification tool and design method
to construct secure and safe software

model checker explicitly for multithreaded software

The Windows Static Driver Verifier is a tool for the verifica-
tion of Windows drivers

language for modeling concurrent and distributed systems
with several tools

verification of real-time systems based on timed automata

separation logic based tool for Java and C programs

81

20,70,72

48

15

46

47

15

49

50

41

51

52

53

Bibliography

Abbassi, Imed and Z Joua (2014). “An event-b driven approach for ensuring reliable and flexible ser-
vice composition”. In: International Journal of Services Computing 2.1, pp. 45-57. Dol 10.29268/
stsc.2014.2.1.4.

Abrial, Jean-Raymond, Egon Borger, and Hans Langmaack, eds. (1996). Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler Control.Vol. 1165. LNCS. Springer. pol:
10.1007/BFb0027227.

Ahrendt, Wolfgang et al., eds. (2016). Deductive Software Verification - The KeY Book - From Theory to
Practice. Vol. 10001. LNCS. Springer. bol: 10.1007/978-3-319-49812-6.

Alpern, Bowen and Fred B. Schneider (1985). “Defining Liveness”. In: Information Processing Letters
21.4, pp. 181-185. D01: 10.1016/0020-0190(85)90056-0.

Appel, Andrew W. et al. (2017). “Position paper: the science of deep specification”. In: Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375.2104,
p.20160331.D01: 10.1098/rsta.2016.0331.

Astrauskas, Vytautas et al. (2019). “Leveraging Rust Types for Modular Specification and Verifica-
tion”. In: Proc. ACM Program. Lang. 3.00PSLA. pol1: 10.1145/3360573.

Ball, Thomas, Vladimir Levin, and Sriram Rajamani (2011). “A decade of software model checking
with SLAM”. In: Commun. ACM 54, pp. 68-76. DOI: 10.1145/1965724.1965743.

Barbosa, Haniel et al. (2022). “cvc5: A Versatile and Industrial-Strength SMT Solver”. en. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu.
Lecture Notes in Computer Science. Springer, pp. 415-442. bo1: 10.1007/978-3-030-99524 -
9_24.

Barnett, Mike et al. (2006). “Boogie: A Modular Reusable Verifier for Object-Oriented Programs”. In:
Formal Methods for Components and Objects. Ed. by Frank S. de Boer et al. Lecture Notes in Com-
puter Science. Springer, pp. 364-387. DOI: 10.1007/11804192_17.

Barrett, Clark, Pascal Fontaine, and Cesare Tinelli (2016). The Satisfiability Modulo Theories Library
(SMT-LIB). https://www.SMT-LIB.org.

Baudin, Patrick et al. (2008). ACSL: Ansi ¢ specification language. Tech. rep. CEA-LIST, France. URL:
https://www.frama-c.com/download/acsl_1.2.pdf.

Baumann, Christoph et al. (2011). “Proving memory separation in a microkernel by code level verifi-
cation”. In: 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops. IEEE, pp. 25-32. DOI: 10.1109/IS0ORCW.2011. 14,

Baumann, Christoph et al. (2012). “Lessons Learned From Microkernel Verification - Specification
Is the New Bottleneck”. In: Proceedings Seventh Conference on Systems Software Verification, SSV
2012. Ed. by Franck Cassez et al. Vol. 102. EPTCS, pp. 18-32. po1: 10.4204/EPTCS. 102.4.

Beckert, Bernhard and Reiner Hahnle (2014). “Reasoning and verification: State of the art and cur-
rent trends”. In: IEEE Intelligent Systems 29.1, pp. 20-29. po1: 10.1109/MIS.2014. 3.

82

https://doi.org/10.29268/stsc.2014.2.1.4
https://doi.org/10.29268/stsc.2014.2.1.4
https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1145/3360573
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17
https://www.SMT-LIB.org
https://www.frama-c.com/download/acsl_1.2.pdf
https://doi.org/10.1109/ISORCW.2011.14
https://doi.org/10.4204/EPTCS.102.4
https://doi.org/10.1109/MIS.2014.3

Formal Verification of Complex Software Systems

Beckert, Bernhard and Michal Moskal (2010). “Deductive Verification of System Software in the Verisoft
XT Project”. In: Klinstliche Intell. 24.1, pp. 57-61. pol: 10.1007/s13218-010-0005-7.

Beckert, Bernhard et al. (2017). “Proving JDK’s Dual Pivot Quicksort Correct”. In: Verified Software.
Theories, Tools, and Experiments - 9th International Conference, VSTTE 2017, Heidelberg, Germany,
July 22-23, 2017, Revised Selected Papers. Ed. by Andrei Paskevich and Thomas Wies. Vol. 10712,
LNCS. Springer, pp. 35-48. D0I: 10.1007/978-3-319-72308-2_3.

Beyer, Dirk (2021). “Software Verification: 10th Comparative Evaluation (SV-COMP 2021)”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by Jan Friso Groote and Kim Guld-
strand Larsen. Vol. 12652. Springer, pp. 401-422. pol1: 10.1007/978-3-030-72013-1_24,

Bhargavan, Karthikeyan et al. (2017). “Everest: Towards a Verified, Drop-in Replacement of HTTPS”.
In: 2nd Summit on Advances in Programming Languages (SNAPL 2017). Ed. by Benjamin S. Lerner,
Rastislav Bodik, and Shriram Krishnamurthi. Vol. 71. Leibniz International Proceedings in Infor-
matics (LIPIcs), 1:1-1:12. po1: 10.4230/LIPIcs.SNAPL.2017.1.

Brown, Fraser et al. (2020). “Towards a Verified Range Analysis for JavaScript JITs”. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2020. ACM, pp. 135-150. pol: 10.1145/3385412.3385968.

Butterfield, Andrew, David Sanan, and Mike Hinchey (2014). “Formalisation of a Separation Micro-
Kernel for Common Criteria Certification”. In: DASIA 2014-DAta Systems In Aerospace 725, p. 36.

Cadar, Cristian, Daniel Dunbar, and Dawson Engler (2008). “KLEE: Unassisted and Automatic Gener-
ation of High-Coverage Tests for Complex Systems Programs”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation. OSDI’08. USENIX Association, pp. 209-
224,

Carbonneaux, Quentin et al. (2022). “Applying Formal Verification to Microkernel IPC at Meta”. In:
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs.
CPP 2022. ACM, pp. 116-129. pOI: 10.1145/3497775.3503681.

Chaki, Sagar and Anupam Datta (2009). “ASPIER: An automated framework for verifying security
protocol implementations”. In: 2009 22nd IEEE Computer Security Foundations Symposium. |EEE,
pp. 172-185. pol: 10.1109/CSF.2009.20.

Chalin, Patrice et al. (2005). “Beyond Assertions: Advanced Specification and Verification with JML
and ESC/Java2”. In: Formal Methods for Components and Objects, 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures. Ed. by Frank S. de
Boer et al. Vol. 4111. LNCS. Springer, pp. 342-363. DOI: 10.1007/11804192_16.

Chong, Nathan and Bart Jacobs (2021). “Formally verifying FreeRTOS’ interprocess communication
mechanism”. In: Embedded World Exhibition & Conference 2021. URL: https : / / www . amazon .
science/publications/formally-verifying-freertos-interprocess-communication-
mechanism.

Cimatti, Alessandro et al. (2013). “The MathSAT5 SMT Solver”. In: Proceedings of TACAS. Ed. by Nir
Piterman and Scott Smolka. Vol. 7795. LNCS. Springer. pol: 10.1007/978-3-642-36742-7_7.
Clarke, Edmund M., Daniel Kroening, and Flavio Lerda (2004). “ATool for Checking ANSI-C Programs”.
In: Tools and Algorithms for the Construction and Analysis of Systems, 10th International Conference,
TACAS 2004, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Ed. by Kurt Jensen and An-
dreas Podelski. Vol. 2988. LNCS. Springer, pp. 168-176. DOI: 10.1007/978-3-540-24730-2_15.

83

https://doi.org/10.1007/s13218-010-0005-7
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1145/3385412.3385968
https://doi.org/10.1145/3497775.3503681
https://doi.org/10.1109/CSF.2009.20
https://doi.org/10.1007/11804192_16
https://www.amazon.science/publications/formally-verifying-freertos-interprocess-communication-mechanism
https://www.amazon.science/publications/formally-verifying-freertos-interprocess-communication-mechanism
https://www.amazon.science/publications/formally-verifying-freertos-interprocess-communication-mechanism
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-24730-2_15

Formal Verification of Complex Software Systems

Cohen, Ernie et al. (2009). “VCC: A Practical System for Verifying Concurrent C”. In: Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-
20, 2009. Proceedings. Ed. by Stefan Berghofer et al. Vol. 5674. LNCS. Springer, pp. 23-42. bol: 10.
1007/978-3-642-03359-9_2.

Conchon, Sylvain et al. (2018). “Alt-Ergo 2.2”. In: SMT Workshop: International Workshop on Satisfia-
bility Modulo Theories. URL: https://hal.inria.fr/hal-01960203.

Costanzo, David, Zhong Shao, and Ronghui Gu (2016). “End-to-End Verification of Information-Flow
Security for C and Assembly Programs”. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’16. ACM, pp. 648-664. DOI: 10. 1145/
2908080.2908100.

Dam, Mads et al. (2013). “Formal verification of information flow security for a simple ARM-based
separation kernel”. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pp. 223-234. poI: 10.1145/2508859.2516702.

Dross, Claire et al. (2021). “VerifyThis 2019: A Program Verification Competition”. In: International
Journal on Software Tools for Technology Transfer 23.6, pp. 883-893. poI: 10.1007/s10009-021-
00619-x.

Dutertre, Bruno (2014). “Yices 2.2”. In: Computer Aided Verification. Ed. by David Hutchison et al.
Vol. 8559. LNCS. Springer, pp. 737-744. pol: 10.1007/978-3-319-08867-9_49.

EuroProofNet (2021). Memorandum of Understanding (MoU) for COST Action CA20111 - European Re-
search Network on Formal Proofs (EuroProofNet). online. URL: https://e-services.cost.eu/
files/domain_files/CA/Action_CA20111/mou/CA20111-e.pdf.

Filliatre, Jean-Christophe and Andrei Paskevich (2013). “Why3 — Where Programs Meet Provers”. en.
In: Programming Languages and Systems. Ed. by Matthias Felleisen and Philippa Gardner. Lecture
Notes in Computer Science. Springer, pp. 125-128. boi: 10.1007/978-3-642-37036-6_8.

Fisher, Kathleen, John Launchbury, and Raymond Richards (2017). “The HACMS program: using for-
mal methods to eliminate exploitable bugs”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 375.2104. poI: 10.1098/rsta.2015.0401.

Gu, Ronghuietal. (2019). “Building Certified Concurrent OS Kernels”. In: Commun. ACM 62.10, pp. 89-
99.DpoI: 10.1145/3356903.

Hahnle, Reiner and Marieke Huisman (2019). “Deductive Software Verification: From Pen-and-Paper
Proofs to Industrial Tools”. In: Computing and Software Science: State of the Art and Perspectives.
Ed. by Bernhard Steffen and Gerhard Woeginger. Springer, pp. 345-373. pol: 10. 1007 /978-3-
319-91908-9_18.

Hassan, Adel, Isam Ishaq, and Jorge Minilla (2021). “Automated verification tools for cryptographic
protocols”. In: 2021 International Conference on Promising Electronic Technologies (ICPET), pp. 58-
65.D0I: 10.1109/ICPET53277.2021.00017.

Hawblitzel, Chris et al. (2017). “IronFleet: proving safety and liveness of practical distributed sys-
tems”. In: Communications of the ACM 60.7, pp. 83-92. poI: 10.1145/3068608.

Heitmeyer, Constance L et al. (2006). “Formal specification and verification of data separation in a
separation kernel for an embedded system”. In: Proceedings of the 13th ACM conference on Com-
puter and communications security, pp. 346-355. bol: 10.1145/1180405.1180448.

Hoare, C. A. R. (1969). “An Axiomatic Basis for Computer Programming”. In: Communications of the
ACM 12.10, pp. 576-580. poI: 10.1145/363235.363259.

84

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://hal.inria.fr/hal-01960203
https://doi.org/10.1145/2908080.2908100
https://doi.org/10.1145/2908080.2908100
https://doi.org/10.1145/2508859.2516702
https://doi.org/10.1007/s10009-021-00619-x
https://doi.org/10.1007/s10009-021-00619-x
https://doi.org/10.1007/978-3-319-08867-9_49
https://e-services.cost.eu/files/domain_files/CA/Action_CA20111/mou/CA20111-e.pdf
https://e-services.cost.eu/files/domain_files/CA/Action_CA20111/mou/CA20111-e.pdf
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1098/rsta.2015.0401
https://doi.org/10.1145/3356903
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1109/ICPET53277.2021.00017
https://doi.org/10.1145/3068608
https://doi.org/10.1145/1180405.1180448
https://doi.org/10.1145/363235.363259

Formal Verification of Complex Software Systems

Huisman, Marieke et al. (2020). “The VerifyThis Collaborative Long Term Challenge”. In: Deductive
Software Verification: Future Perspectives: Reflections on the Occasion of 20 Years of KeY. Ed. by
Wolfgang Ahrendt et al. Lecture Notes in Computer Science. Springer, pp. 246-260. boI: 10. 1007/
978-3-030-64354-6_10

Klein, Gerwin et al. (2009). “seL4: Formal Verification of an OS Kernel”. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles. SOSP ’09. ACM, pp. 207-220. pol: 10.
1145/1629575.1629596.

Lattner, Chris and Vikram Adve (2004). “LLVM: A compilation framework for lifelong program analysis
& transformation”. In: International Symposium on Code Generation and Optimization, 2004. CGO
2004. IEEE, pp. 75-86. DOI1: 10.1109/CG0.2004 . 1281665.

Leroy, Xavier et al. (2016). “CompCert - A Formally Verified Optimizing Compiler”. In: ERTS 2016: Em-
bedded Real Time Software and Systems, 8th European Congress. SEE. URL: https://hal.inria.
fr/hal-01238879

Lorch, Jacob R. et al. (2020). “Armada: Low-Effort Verification of High-Performance Concurrent Pro-
grams”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2020. ACM, pp. 197-210. pol: 10.1145/3385412.3385971.

Monti, Rall E., Robert Rubbens, and Marieke Huisman (2022). “On Deductive Verification of an Indus-
trial Concurrent Software Component with VerCors”. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Verification Principles - 11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22-30, 2022, Proceedings, Part I. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 13701. LNCS. Springer, pp. 517-534. po1: 10.1007/978-3-031-19849-6_29.

Moura, Leonardo de and Nikolaj Bjgrner (2008). “Z3: An Efficient SMT Solver”. en. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Lecture Notes in Computer Science. Springer, pp. 337-340. boI: 10.1007/978-3-540-78800-
3_24.

Miiller, Peter, Malte Schwerhoff, and Alexander J. Summers (2016). “Viper: A Verification Infrastruc-
ture for Permission-Based Reasoning”. In: Verification, Model Checking, and Abstract Interpreta-
tion. Ed. by Barbara Jobstmann and K. Rustan M. Leino. Lecture Notes in Computer Science. Springer,
pp. 41-62. D0I: 10.1007/978-3-662-49122-5_2.

NSA (2022). Software Memory Safety. Cybersecurity Information Sheet. URL: https://media.defense.
gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY . PDF.

Oliveira, Daniel Bristot de, Tommaso Cucinotta, and Romulo Silva de Oliveira (2019). “Efficient For-
mal Verification for the Linux Kernel”. In: Software Engineering and Formal Methods - 17th Inter-
national Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings. Ed. by Peter
Csaba Olveczky and Gwen Salaiin. Vol. 11724. LNCS. Springer, pp. 315-332. pol: 10.1007/978-
3-030-30446-1_17

Pavlinovic, Zvonimir, Akash Lal, and Rahul Sharma (2016). “Inferring Annotations for Device Drivers
from Verification Histories”. In: Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering. ASE 2016. ACM, pp. 450-460. DOI: 10.1145/2970276.2970305.

Peisert, Sean (2022). The Current State of Software Assurance Tools and Techniques. Tech. rep. UC
Davi. URL: https://escholarship.org/uc/item/3435g520

Penix, John et al. (2005). “Verifying time partitioning in the DEOS scheduling kernel”. In: Formal
Methods in System Design 26.2, pp. 103-135. pol: 10.1007/s10703-005-1490-4.

85

https://doi.org/10.1007/978-3-030-64354-6_10
https://doi.org/10.1007/978-3-030-64354-6_10
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/CGO.2004.1281665
https://hal.inria.fr/hal-01238879
https://hal.inria.fr/hal-01238879
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1007/978-3-031-19849-6_29
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://doi.org/10.1007/978-3-030-30446-1_17
https://doi.org/10.1007/978-3-030-30446-1_17
https://doi.org/10.1145/2970276.2970305
https://escholarship.org/uc/item/3435g520
https://doi.org/10.1007/s10703-005-1490-4

Formal Verification of Complex Software Systems

Przigoda, Nils et al. (2018). “Frame conditions in the automatic validation and verification of UM-
L/OCL models: A symbolic formulation of modifies only statements”. In: Computer Languages,
Systems & Structures 54, pp. 512-527. pol: 10.1016/3j.¢c1.2017.11.002.

Recoules, Frédéric et al. (2019). “Get Rid of Inline Assembly through Verification-Oriented Lifting”. In:
34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego,
CA, USA, November 11-15, 2019. IEEE, pp. 577-589. DOI: 10.1109/ASE. 2019.00060.

Rosu, Grigore and Traian Florin Serbanuta (2010). “An Overview of the K Semantic Framework”. In:
The Journal of Logic and Algebraic Programming. Membrane Computing and Programming 79.6,
pp.397-434.p01: 10.1016/j.jlap.2010.03.012.

Sommerville, lan (2011). Software Engineering. 9th ed. Addison-Wesley. 1ISBN: 978-0-13-703515-1.

Vanfleet, W Mark et al. (2005). “MILS: Architecture for high-assurance embedded computing”. In:
CrossTalk 18.8, pp. 12-16.

Zakowski, Yannick et al. (2021). “Modular, compositional, and executable formal semantics for LLVM
IR”. In: Proc. ACM Program. Lang. 5.ICFP, pp. 1-30. DOI: 10.1145/3473572.

Zhao, Yongwang, Zhibin Yang, and Dianfu Ma (2017). “A survey on formal specification and verifica-
tion of separation kernels”. In: Frontiers of Computer Science 11.4, pp. 585-607. poI: 10 . 1007 /
s11704-016-4226-2.

86

https://doi.org/10.1016/j.cl.2017.11.002
https://doi.org/10.1109/ASE.2019.00060
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3473572
https://doi.org/10.1007/s11704-016-4226-2
https://doi.org/10.1007/s11704-016-4226-2

A. Publications from Snowballing

This appendix lists the 11 publications retrieved by snowballing (see Section 3.3).

References

Beckert, Bernhard and Reiner Hahnle (2014). “Reasoning and verification: State of the art and cur-
rent trends”. In: IEEE Intelligent Systems 29.1, pp. 20-29. po1: 10.1109/MIS.2014. 3.

Beyer, Dirk and Matthias Dangl (2020). “Software Verification with PDR: An Implementation of the
State of the Art”. In: Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020.
Ed. by Armin Biere and David Parker. Vol. 12078. LNCS. Springer, pp. 3-21. pol: 10.1007/978-3-
030-45190-5_1.

Beyer, Dirk, Matthias Dangl, and Philipp Wendler (2018). “A Unifying View on SMT-Based Software
Verification”. In: Journal of Automated Reasoning 60.3, pp. 299-335. pol: 10.1007/s10817-017-
9432-6.

Beyer, Dirk, Sudeep Kanav, and Cedric Richter (2022). “Construction of Verifier Combinations Based
on Off-the-Shelf Verifiers”. In: Fundamental Approaches to Software Engineering, FASE 2022. Ed. by
Einar Broch Johnsen and Manuel Wimmer. Vol. 13241. LNCS. Springer, pp. 49-70. pol1: 10.1007/
978-3-030-99429-7_3.

Beyer, Dirk, Martin Spiessl, and Sven Umbricht (2022). “Cooperation Between Automatic and Inter-
active Software Verifiers”. In: Software Engineering and Formal Methods, SEFM 2022. Ed. by Bernd-
Holger Schlingloff and Ming Chai. Vol. 13550. LNCS. Springer, pp. 111-128. bol: 10.1007/978-3-
031-17108-6_7.

Damiani, Ferruccio, Reiner Hahnle, and Michael Lienhardt (2017). “Abstraction Refinement for the
Analysis of Software Product Lines”. In: Tests and Proofs, TAP@STAF 2017. Ed. by Sebastian Gab-
meyer and Einar Broch Johnsen. Vol. 10375. LNCS. Springer, pp. 3-20. boI: 10.1007/978-3-319-
61467-0_1.

de Gouw, Stijn et al. (2019). “Verifying OpenJDK’s Sort Method for Generic Collections”. In: Journal
of Automated Reasoning 62.1, pp. 93-126. pol: 10.1007/s10817-017-9426-4.

Do, Quoc Huy, Richard Bubel, and Reiner Hahnle (2017). “Automatic Detection and Demonstrator
Generation for Information Flow Leaks in Object-Oriented Programs”. In: Computers & Security
67, pp. 335-349. D01: 10.1016/j.cose.2016.12.002.

Gouw, Stijn de et al. (2015). “OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad and
the Worst Case”. In: Computer Aided Verification, CAV 2015. Ed. by Daniel Kroening and Corina S.
Pasareanu. Vol. 9206. LNCS. Springer, pp. 273-289. p0I: 10.1007/978-3-319-21690-4_16.

Lathouwers, Sophie and Marieke Huisman (2022). “Formal Specifications Investigated: A Classifi-
cation and Analysis of Annotations for Deductive Verifiers”. In: Proceedings of the IEEE/ACM 10th
International Conference on Formal Methods in Software Engineering. FormaliSE ’22. ACM, pp. 69-
79.D01: 10.1145/3524482.3527652.

87

https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1007/978-3-319-61467-0_1
https://doi.org/10.1007/978-3-319-61467-0_1
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1016/j.cose.2016.12.002
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1145/3524482.3527652

Formal Verification of Complex Software Systems

Scheurer, Dominic, Reiner Hahnle, and Richard Bubel (2016). “A General Lattice Model for Merging
Symbolic Execution Branches”. In: Formal Methods and Software Engineering, ICFEM 2016. Ed. by
Kazuhiro Ogata, Mark Lawford, and Shaoying Liu. Vol. 10009. LNCS, pp. 57-73. D0OI: 10.1007/978-
3-319-47846-3_5.

88

https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5

B. Publications from relevant Conferences

This appendix lists the 11 publications retrieved by screening the relevant conference: FASE, TACAS,
FM, CAV, IJCAR and NFM (see Section 3.3).

References

Abate, Alessandro et al. (2018). “Counterexample Guided Inductive Synthesis Modulo Theories”.
In: Computer Aided Verification. Ed. by Hana Chockler and Georg Weissenbacher. LNCS. Springer,
pp. 270-288. pOI: 10.1007/978-3-319-96145-3_15.

Abdulla, Parosh Aziz et al. (2015). “Stateless Model Checking for TSO and PSO”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by Christel Baier and Cesare Tinelli. LNCS.
Springer, pp. 353-367. DOI: 10.1007/978-3-662-46681-0_28.

Alur, Rajeev, Arjun Radhakrishna, and Abhishek Udupa (2017). “Scaling Enumerative Program Syn-
thesis via Divide and Conquer”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems. Ed. by Axel Legay and Tiziana Margaria. LNCS. Springer, pp. 319-336. DOI: 10.1007/978-3-
662-54577-5_18.

Barbosa, Haniel et al. (2022). “Cvc5: A Versatile and Industrial-Strength SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu.
LNCS. Springer, pp. 415-442. po1: 10.1007/978-3-030-99524-9_24.

Beyer, Dirk (2015). “Software Verification and Verifiable Witnesses”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by Christel Baier and Cesare Tinelli. LNCS. Springer,
pp. 401-416. pOl: 10.1007/978-3-662-46681-0_31.

- (2016). “Reliable and Reproducible Competition Results with BenchExec and Witnesses (Report
on SV-COMP 2016)”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Marsha Chechik and Jean-Francois Raskin. LNCS. Springer, pp. 887-904. pol: 10.1007/978-3-
662-49674-9_55.

- (2017). “Software Verification with Validation of Results”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. Ed. by Axel Legay and Tiziana Margaria. LNCS. Springer, pp. 331-349.
DOI: 10.1007/978-3-662-54580-5_20.

- (2019). “Automatic Verification of C and Java Programs: SV-COMP 2019”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by Dirk Beyer et al. LNCS. Springer, pp. 133-155.
DOI: 10.1007/978-3-030-17502-3_9.

- (2020). “Advances in Automatic Software Verification: SV-COMP 2020”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Armin Biere and David Parker. LNCS. Springer,
pp. 347-367. DOI: 10.1007/978-3-030-45237-7_21.

- (2021). “Software Verification: 10th Comparative Evaluation (SV-COMP 2021)”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by Jan Friso Groote and Kim Guldstrand
Larsen. LNCS. Springer, pp. 401-422. po1: 10.1007/978-3-030-72013-1_24.

89

https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-72013-1_24

Formal Verification of Complex Software Systems

Bjarner, Nikolaj, Anh-Dung Phan, and Lars Fleckenstein (2015). “vZ - An Optimizing SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Christel Baier and Cesare
Tinelli. LNCS. Springer, pp. 194-199. poI: 10.1007/978-3-662-46681-0_14.

Bunte, Olav et al. (2019). “The mCRL2 Toolset for Analysing Concurrent Systems”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by Tomas Vojnar and Lijun Zhang. LNCS.
Springer, pp. 21-39. p01: 10.1007/978-3-030-17465-1_2.

Calcagno, Cristiano et al. (2015). “Moving Fast with Software Verification”. In: NASA Formal Methods.
Ed. by Klaus Havelund, Gerard Holzmann, and Rajeev Joshi. LNCS. Springer, pp. 3-11. pol: 10.
1007/978-3-319-17524-9_1.

Cavada, Roberto etal. (2014). “The nuXmv Symbolic Model Checker”. In: Computer Aided Verification.
Ed. by Armin Biere and Roderick Bloem. LNCS. Springer, pp. 334-342. p0O1: 10.1007/978-3-319-
08867-9_22.

Chudnov, Andrey et al. (2018). “Continuous Formal Verification of Amazon S2n”. In: Computer Aided
Verification. Ed. by Hana Chockler and Georg Weissenbacher. LNCS. Springer, pp. 430-446. DOI:
10.1007/978-3-319-96142-2_26.

Cook, Byron (2018). “Formal Reasoning About the Security of Amazon Web Services”. In: Computer
Aided Verification. Ed. by Hana Chockler and Georg Weissenbacher. LNCS. Springer, pp. 38-47. DOl:
10.1007/978-3-319-96145-3_3.

Cordeiro, Lucas et al. (2018). “JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode”.
In: Computer Aided Verification. Ed. by Hana Chockler and Georg Weissenbacher. LNCS. Springer,
pp. 183-190. pol: 10.1007/978-3-319-96145-3_10.

Dutertre, Bruno (2014). “Yices 2.2”. In: Computer Aided Verification. Ed. by Armin Biere and Roderick
Bloem. LNCS. Springer, pp. 737-744. DOI: 10.1007/978-3-319-08867-9_49.

Garg, Pranav et al. (2014). “ICE: A Robust Framework for Learning Invariants”. In: Computer Aided
Verification. Ed. by Armin Biere and Roderick Bloem. LNCS. Springer, pp. 69-87. pol: 10. 1007/
978-3-319-08867-9_5.

Gibson-Robinson, Thomas et al. (2014). “FDR3 - A modern refinement checker for CSP”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Erika Abrahdm and Klaus Havelund.
Vol. 8413. LNCS. Springer, pp. 187-201. pol: 10.1007/978-3-642-54862-8_13.

Giesl, Jurgen et al. (2014). “Proving Termination of Programs Automatically with AProVE”. In: Au-
tomated Reasoning. Ed. by Stéphane Demri, Deepak Kapur, and Christoph Weidenbach. LNCS.
Springer, pp. 184-191. pol: 10.1007/978-3-319-08587-6_13.

Gurfinkel, Arie et al. (2015). “The SeaHorn Verification Framework”. In: Computer Aided Verification.
Ed. by Daniel Kroening and Corina S. Pasareanu. LNCS. Springer, pp. 343-361. DOI: 10.1007/978-
3-319-21690-4_20.

Komuravelli, Anvesh, Arie Gurfinkel, and Sagar Chaki (2014). “SMT-Based Model Checking for Recur-
sive Programs”. In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem. LNCS.
Springer, pp. 17-34. po1: 10.1007/978-3-319-08867-9_2.

Kroening, Daniel and Michael Tautschnig (2014). “CBMC - C Bounded Model Checker”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Erika Abrahdm and Klaus Havelund.
LNCS. Springer, pp. 389-391. pol: 10.1007/978-3-642-54862-8_26.

Kumar, Rajesh et al. (2018). “Effective Analysis of Attack Trees: A Model-Driven Approach”. In: Fun-
damental Approaches to Software Engineering. Ed. by Alessandra Russo and Andy Schiirr. LNCS.
Springer, pp. 56-73. D0OI: 10.1007/978-3-319-89363-1_4.

90

https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-319-89363-1_4

Formal Verification of Complex Software Systems

Liang, Tianyi et al. (2014). “ADPLL(T) Theory Solver for a Theory of Strings and Regular Expressions”.
In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem. LNCS. Springer, pp. 646-
662.D01: 10.1007/978-3-319-08867-9_43.

Menezes, Rafael et al. (2018). “Map2Check Using LLVM and KLEE”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by Dirk Beyer and Marieke Huisman. LNCS. Springer,
pp. 437-441. pol: 10.1007/978-3-319-89963-3_28.

Niemetz, Aina et al. (2018). “Btor2 , BtorMC and Boolector 3.0”. In: Computer Aided Verification. Ed.
by Hana Chockler and Georg Weissenbacher. LNCS. Springer, pp. 587-595. pol1: 10.1007/978-3-
319-96145-3_32.

Rakamari¢, Zvonimir and Michael Emmi (2014). “SMACK: Decoupling Source Language Details from
Verifier Implementations”. In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem.
LNCS. Springer, pp. 106-113. bol: 10.1007/978-3-319-08867-9_7.

Reger, Giles, Helena Cuenca Cruz, and David Rydeheard (2015). “MarQ: Monitoring at Runtime with
QEA”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Christel Baier
and Cesare Tinelli. LNCS. Springer, pp. 596-610. pol: 10.1007/978-3-662-46681-0_55.

Reinbacher, Thomas, Kristin Yvonne Rozier, and Johann Schumann (2014). “Temporal-Logic Based
Runtime Observer Pairs for System Health Management of Real-Time Systems”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems. Ed. by Erika Abrahdm and Klaus Havelund.
LNCS. Springer, pp. 357-372. DOI: 10.1007/978-3-642-54862-8_24.

Reynolds, Andrew et al. (2015). “Counterexample-Guided Quantifier Instantiation for Synthesis in
SMT”. In: Computer Aided Verification. Ed. by Daniel Kroening and Corina S. Pasareanu. LNCS.
Springer, pp. 198-216. poI: 10.1007/978-3-319-21668-3_12.

Schubert, Philipp Dominik, Ben Hermann, and Eric Bodden (2019). “PhASAR: An Inter-procedural
Static Analysis Framework for C/C++”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Tomas Vojnar and Lijun Zhang. LNCS. Springer, pp. 393-410. pol: 10.1007/978-
3-030-17465-1_22.

Sharma, Rahul and Alex Aiken (2014). “From Invariant Checking to Invariant Inference Using Ran-
domized Search”. In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem. LNCS.
Springer, pp. 88-105. poI: 10.1007/978-3-319-08867-9_6.

Sinn, Moritz, Florian Zuleger, and Helmut Veith (2014). “A Simple and Scalable Static Analysis for
Bound Analysis and Amortized Complexity Analysis”. In: Computer Aided Verification. Ed. by Armin
Biere and Roderick Bloem. LNCS. Springer, pp. 745-761. DOI: 10.1007/978-3-319-08867-9_50.

Solovyev, Alexey et al. (2015). “Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions”. In: FM 2015: Formal Methods. Ed. by Nikolaj Bjgrner and Frank de Boer. LNCS.
Springer, pp. 532-550. bol1: 10.1007/978-3-319-19249-9_33.

Stump, Aaron, Geoff Sutcliffe, and Cesare Tinelli (2014). “StarExec: A Cross-Community Infrastruc-
ture for Logic Solving”. In: Automated Reasoning. Ed. by Stéphane Demri, Deepak Kapur, and Christoph
Weidenbach. Vol. 8562. LNCS. Springer, pp. 367-373. D0I: 10.1007/978-3-319-08587-6_28.

Voronkov, Andrei (2014). “AVATAR: The Architecture for First-Order Theorem Provers”. In: Computer
Aided Verification. Ed. by Armin Biere and Roderick Bloem. LNCS. Springer, pp. 696-710. poOlI: 10.
1007/978-3-319-08867-9_46.

Wang, Xinyu et al. (2018). “Learning Abstractions for Program Synthesis”. In: Computer Aided Veri-
fication. Ed. by Hana Chockler and Georg Weissenbacher. LNCS. Springer, pp. 407-426. bol: 10.
1007/978-3-319-96145-3_22.

91

https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-89963-3_28
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-96145-3_22
https://doi.org/10.1007/978-3-319-96145-3_22

29000000000000000 8 004

O eseseesst 808 8

L 0 e
LA LLTTT]
LA Al

0

..“....\“\ln.l.t\...am..............“.“.”.”...

..o..o-.-..o

§
§

i

e®Seq
e®®®®o
.......
.......
LA X P

L]
.3;.... LX)
(111 '
foooo- []

]
L]
.

